Find a file
River Riddle ccaabff131 [mlir][NFC] Update textual references of func to func.func in Analysis/ tests
The special case parsing of `func` operations is being removed.
2022-04-20 22:17:27 -07:00
.github
bolt [BOLT] Add fuzzy function name matching for LLVM LTO 2022-04-20 17:00:21 -07:00
clang [C++20] [Modules] Judge current module correctly 2022-04-21 11:09:55 +08:00
clang-tools-extra [C11/C2x] Change the behavior of the implicit function declaration warning 2022-04-20 11:30:12 -04:00
cmake [cmake] Demote fatal error to a warning when we don't know the Apple SDK in use 2022-03-22 15:36:47 -04:00
compiler-rt Speculatively fix build bot 2022-04-20 13:39:53 -04:00
cross-project-tests Speculatively fix build bots 2022-04-20 11:48:06 -04:00
flang [mlir][OpenMP] Add checks and tests for hint clause and fix empty hint 2022-04-21 07:31:03 +05:30
libc [libc] Add the implementation of the fflush function. 2022-04-20 19:43:39 +00:00
libclc
libcxx Treat std::move, forward, etc. as builtins. 2022-04-20 17:58:31 -07:00
libcxxabi [demangler] Support C23 _BitInt type 2022-04-08 12:20:45 +08:00
libunwind [libunwind][AIX] implementation of the unwinder for AIX 2022-04-13 13:18:10 -04:00
lld [ELF] Shrink binding and type in Symbol 2022-04-20 10:46:36 -07:00
lldb [LLDB] Skip TestCrashDuringStep.py AArch64/Windows 2022-04-21 05:10:37 +05:00
llvm [RISCV] Make getInstSeqCost handle other Zb* instructions. 2022-04-20 22:08:04 -07:00
llvm-libgcc
mlir [mlir][NFC] Update textual references of func to func.func in Analysis/ tests 2022-04-20 22:17:27 -07:00
openmp [Libomptarget][remote] Fix compile-time error 2022-04-19 16:46:01 -04:00
polly [ScopBuilder] Avoid pointer element type access 2022-04-20 11:52:36 +02:00
pstl
runtimes
test Remove folder introduced by incorrect patch level 2022-04-14 16:59:56 -07:00
third-party
utils [Pipelines] Remove Legacy Passes in Coroutines 2022-04-21 10:59:11 +08:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.