rust/docs/user/manual.adoc
Aleksey Kladov a53c6f6fee Allow redirecting logs to a specific file
There's a surprising lack of crates which are like env_logger, but
also allow writing to a file. Let's write our own then!
2020-08-26 13:20:46 +02:00

429 lines
17 KiB
Text

= User Manual
:toc: preamble
:sectanchors:
:page-layout: post
:icons: font
:source-highlighter: rouge
:experimental:
// Master copy of this document lives in the https://github.com/rust-analyzer/rust-analyzer repository
At its core, rust-analyzer is a *library* for semantic analysis of Rust code as it changes over time.
This manual focuses on a specific usage of the library -- running it as part of a server that implements the
https://microsoft.github.io/language-server-protocol/[Language Server Protocol] (LSP).
The LSP allows various code editors, like VS Code, Emacs or Vim, to implement semantic features like completion or goto definition by talking to an external language server process.
[TIP]
====
[.lead]
To improve this document, send a pull request: +
https://github.com/rust-analyzer/rust-analyzer/blob/master/docs/user/manual.adoc[https://github.com/rust-analyzer/.../manual.adoc]
====
If you have questions about using rust-analyzer, please ask them in the https://users.rust-lang.org/c/ide/14["`IDEs and Editors`"] topic of Rust users forum.
== Installation
In theory, one should be able to just install the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>> and have it automatically work with any editor.
We are not there yet, so some editor specific setup is required.
Additionally, rust-analyzer needs the sources of the standard library.
If the source code is not present, rust-analyzer will attempt to install it automatically.
To add the sources manually, run the following command:
```bash
$ rustup component add rust-src
```
=== VS Code
This is the best supported editor at the moment.
The rust-analyzer plugin for VS Code is maintained
https://github.com/rust-analyzer/rust-analyzer/tree/master/editors/code[in tree].
You can install the latest release of the plugin from
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer[the marketplace].
By default, the plugin will prompt you to download the matching version of the server as well:
image::https://user-images.githubusercontent.com/9021944/75067008-17502500-54ba-11ea-835a-f92aac50e866.png[]
[NOTE]
====
To disable this notification put the following to `settings.json`
[source,json]
----
{ "rust-analyzer.updates.askBeforeDownload": false }
----
====
The server binary is stored in:
* Linux: `~/.config/Code/User/globalStorage/matklad.rust-analyzer`
* macOS: `~/Library/Application\ Support/Code/User/globalStorage/matklad.rust-analyzer`
* Windows: `%APPDATA%\Code\User\globalStorage\matklad.rust-analyzer`
Note that we only support two most recent versions of VS Code.
==== Updates
The extension will be updated automatically as new versions become available. It will ask your permission to download the matching language server version binary if needed.
===== Nightly
We ship nightly releases for VS Code. To help us out with testing the newest code and follow the bleeding edge of our `master`, please use the following config:
[source,json]
----
{ "rust-analyzer.updates.channel": "nightly" }
----
You will be prompted to install the `nightly` extension version. Just click `Download now` and from that moment you will get automatic updates every 24 hours.
If you don't want to be asked for `Download now` every day when the new nightly version is released add the following to your `settings.json`:
[source,json]
----
{ "rust-analyzer.updates.askBeforeDownload": false }
----
NOTE: Nightly extension should **only** be installed via the `Download now` action from VS Code.
==== Building From Source
Alternatively, both the server and the plugin can be installed from source:
[source]
----
$ git clone https://github.com/rust-analyzer/rust-analyzer.git && cd rust-analyzer
$ cargo xtask install
----
You'll need Cargo, nodejs and npm for this.
Note that installing via `xtask install` does not work for VS Code Remote, instead you'll need to install the `.vsix` manually.
==== Troubleshooting
Here are some useful self-diagnostic commands:
* **Rust Analyzer: Show RA Version** shows the version of `rust-analyzer` binary
* **Rust Analyzer: Status** prints some statistics about the server, like the few latest LSP requests
* To enable server-side logging, run with `env RA_LOG=info` and see `Output > Rust Analyzer Language Server` in VS Code's panel.
* To log all LSP requests, add `"rust-analyzer.trace.server": "verbose"` to the settings and look for `Rust Analyzer Language Server Trace` in the panel.
* To enable client-side logging, add `"rust-analyzer.trace.extension": true` to the settings and open `Output > Rust Analyzer Client` in the panel.
=== rust-analyzer Language Server Binary
Other editors generally require the `rust-analyzer` binary to be in `$PATH`.
You can download the pre-built binary from the https://github.com/rust-analyzer/rust-analyzer/releases[releases] page.
Typically, you then need to rename the binary for your platform, e.g. `rust-analyzer-mac` if you're on Mac OS, to `rust-analyzer` and make it executable in addition to moving it into a directory in your `$PATH`.
On Linux to install the `rust-analyzer` binary into `~/.local/bin`, this commands could be used
[source,bash]
----
$ curl -L https://github.com/rust-analyzer/rust-analyzer/releases/latest/download/rust-analyzer-linux -o ~/.local/bin/rust-analyzer
$ chmod +x ~/.local/bin/rust-analyzer
----
Ensure `~/.local/bin` is listed in the `$PATH` variable.
Alternatively, you can install it from source using the following command:
[source,bash]
----
$ git clone https://github.com/rust-analyzer/rust-analyzer.git && cd rust-analyzer
$ cargo xtask install --server
----
If your editor can't find the binary even though the binary is on your `$PATH`, the likely explanation is that it doesn't see the same `$PATH` as the shell, see https://github.com/rust-analyzer/rust-analyzer/issues/1811[this issue].
On Unix, running the editor from a shell or changing the `.desktop` file to set the environment should help.
==== Arch Linux
The `rust-analyzer` binary can be installed from the repos or AUR (Arch User Repository):
- https://www.archlinux.org/packages/community/x86_64/rust-analyzer/[`rust-analyzer`] (built from latest tagged source)
- https://aur.archlinux.org/packages/rust-analyzer-git[`rust-analyzer-git`] (latest Git version)
Install it with pacman, for example:
[source,bash]
----
$ pacman -S rust-analyzer
----
=== Emacs
Prerequisites: You have installed the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>>.
Emacs support is maintained as part of the https://github.com/emacs-lsp/lsp-mode[Emacs-LSP] package in https://github.com/emacs-lsp/lsp-mode/blob/master/lsp-rust.el[lsp-rust.el].
1. Install the most recent version of `emacs-lsp` package by following the https://github.com/emacs-lsp/lsp-mode[Emacs-LSP instructions].
2. Set `lsp-rust-server` to `'rust-analyzer`.
3. Run `lsp` in a Rust buffer.
4. (Optionally) bind commands like `lsp-rust-analyzer-join-lines`, `lsp-extend-selection` and `lsp-rust-analyzer-expand-macro` to keys.
=== Vim/NeoVim
Prerequisites: You have installed the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>>. Not needed if the extension can install/update it on its own, coc-rust-analyzer is one example.
The are several LSP client implementations for vim or neovim:
==== coc-rust-analyzer
1. Install coc.nvim by following the instructions at
https://github.com/neoclide/coc.nvim[coc.nvim]
(Node.js required)
2. Run `:CocInstall coc-rust-analyzer` to install
https://github.com/fannheyward/coc-rust-analyzer[coc-rust-analyzer],
this extension implements _most_ of the features supported in the VSCode extension:
* automatically install and upgrade stable/nightly releases
* same configurations as VSCode extension, `rust-analyzer.serverPath`, `rust-analyzer.cargo.features` etc.
* same commands too, `rust-analyzer.analyzerStatus`, `rust-analyzer.ssr` etc.
* inlay hints for method chaining support, _Neovim Only_
* semantic highlighting is not implemented yet
==== LanguageClient-neovim
1. Install LanguageClient-neovim by following the instructions
https://github.com/autozimu/LanguageClient-neovim[here]
* The GitHub project wiki has extra tips on configuration
2. Configure by adding this to your vim/neovim config file (replacing the existing Rust-specific line if it exists):
+
[source,vim]
----
let g:LanguageClient_serverCommands = {
\ 'rust': ['rust-analyzer'],
\ }
----
==== YouCompleteMe
1. Install YouCompleteMe by following the instructions
https://github.com/ycm-core/lsp-examples#rust-rust-analyzer[here]
2. Configure by adding this to your vim/neovim config file (replacing the existing Rust-specific line if it exists):
+
[source,vim]
----
let g:ycm_language_server =
\ [
\ {
\ 'name': 'rust',
\ 'cmdline': ['rust-analyzer'],
\ 'filetypes': ['rust'],
\ 'project_root_files': ['Cargo.toml']
\ }
\ ]
----
==== ALE
To use the LSP server in https://github.com/dense-analysis/ale[ale]:
[source,vim]
----
let g:ale_linters = {'rust': ['analyzer']}
----
==== nvim-lsp
NeoVim 0.5 (not yet released) has built-in language server support.
For a quick start configuration of rust-analyzer, use https://github.com/neovim/nvim-lsp#rust_analyzer[neovim/nvim-lsp].
Once `neovim/nvim-lsp` is installed, use `+lua require'nvim_lsp'.rust_analyzer.setup({})+` in your `init.vim`.
=== Sublime Text 3
Prerequisites: You have installed the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>>.
You also need the `LSP` package. To install it:
1. If you've never installed a Sublime Text package, install Package Control:
* Open the command palette (Win/Linux: `ctrl+shift+p`, Mac: `cmd+shift+p`)
* Type `Install Package Control`, press enter
2. In the command palette, run `Package control: Install package`, and in the list that pops up, type `LSP` and press enter.
Finally, with your Rust project open, in the command palette, run `LSP: Enable Language Server In Project` or `LSP: Enable Language Server Globally`, then select `rust-analyzer` in the list that pops up to enable the rust-analyzer LSP. The latter means that rust-analyzer is enabled by default in Rust projects.
If it worked, you should see "rust-analyzer, Line X, Column Y" on the left side of the bottom bar, and after waiting a bit, functionality like tooltips on hovering over variables should become available.
If you get an error saying `No such file or directory: 'rust-analyzer'`, see the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>> section on installing the language server binary.
=== GNOME Builder
Prerequisites: You have installed the <<rust-analyzer-language-server-binary,`rust-analyzer` binary>>.
Gnome Builder currently has support for RLS, and there's no way to configure the language server executable. A future version might support `rust-analyzer` out of the box.
1. Rename, symlink or copy the `rust-analyzer` binary to `rls` and place it somewhere Builder can find (in `PATH`, or under `~/.cargo/bin`).
2. Enable the Rust Builder plugin.
==== GNOME Builder (Nightly)
https://nightly.gnome.org/repo/appstream/org.gnome.Builder.flatpakref[GNOME Builder (Nightly)] has now native support for `rust-analyzer` out of the box. If the `rust-analyzer` binary is not available, GNOME Builder can install it when opening a Rust source file.
== Non-Cargo Based Projects
rust-analyzer does not require Cargo.
However, if you use some other build system, you'll have to describe the structure of your project for rust-analyzer in the `rust-project.json` format:
[source,TypeScript]
----
interface JsonProject {
/// Path to the directory with *source code* of sysroot crates.
///
/// It should point to the directory where std, core, and friends can be found:
/// https://github.com/rust-lang/rust/tree/master/library.
///
/// If provided, rust-analyzer automatically adds dependencies on sysroot
/// crates. Conversely, if you omit this path, you can specify sysroot
/// dependencies yourself and, for example, have several different "sysroots" in
/// one graph of crates.
sysroot_src?: string;
/// The set of crates comprising the current project.
/// Must include all transitive dependencies as well as sysroot crate (libstd, libcore and such).
crates: Crate[];
}
interface Crate {
/// Path to the root module of the crate.
root_module: string;
/// Edition of the crate.
edition: "2015" | "2018";
/// Dependencies
deps: Dep[];
/// Should this crate be treated as a member of current "workspace".
///
/// By default, inferred from the `root_module` (members are the crates which reside
/// inside the directory opened in the editor).
///
/// Set this to `false` for things like standard library and 3rd party crates to
/// enable performance optimizations (rust-analyzer assumes that non-member crates
/// don't change).
is_workspace_member?: boolean;
/// Optionally specify the (super)set of `.rs` files comprising this crate.
///
/// By default, rust-analyzer assumes that only files under `root_module.parent` can belong to a crate.
/// `include_dirs` are included recursively, unless a subdirectory is in `exclude_dirs`.
///
/// Different crates can share the same `source`.
///
/// If two crates share an `.rs` file in common, they *must* have the same `source`.
/// rust-analyzer assumes that files from one source can't refer to files in another source.
source?: {
include_dirs: string[],
exclude_dirs: string[],
},
/// The set of cfgs activated for a given crate, like `["unix", "feature=foo", "feature=bar"]`.
cfg: string[];
/// Target triple for this Crate.
///
/// Used when running `rustc --print cfg` to get target-specific cfgs.
target?: string;
/// Environment variables, used for the `env!` macro
env: : { [key: string]: string; },
/// For proc-macro crates, path to compiles proc-macro (.so file).
proc_macro_dylib_path?: string;
}
interface Dep {
/// Index of a crate in the `crates` array.
crate: number,
/// Name as should appear in the (implicit) `extern crate name` declaration.
name: string,
}
----
This format is provisional and subject to change.
Specifically, the `roots` setup will be different eventually.
There are tree ways to feed `rust-project.json` to rust-analyzer:
* Place `rust-project.json` file at the root of the project, and rust-anlayzer will discover it.
* Specify `"rust-analyzer.linkedProjects": [ "path/to/rust-project.json" ]` in the settings (and make sure that your LSP client sends settings as a part of initialize request).
* Specify `"rust-analyzer.linkedProjects": [ { "roots": [...], "crates": [...] }]` inline.
Relative paths are interpreted relative to `rust-project.json` file location or (for inline JSON) relative to `rootUri`.
See https://github.com/rust-analyzer/rust-project.json-example for a small example.
You can set `RA_LOG` environmental variable to `rust_analyzer=info` to inspect how rust-analyzer handles config and project loading.
== Features
include::./generated_features.adoc[]
== Assists (Code Actions)
Assists, or code actions, are small local refactorings, available in a particular context.
They are usually triggered by a shortcut or by clicking a light bulb icon in the editor.
Cursor position or selection is signified by `┃` character.
include::./generated_assists.adoc[]
== Editor Features
=== VS Code
==== Special `when` clause context for keybindings.
You may use `inRustProject` context to configure keybindings for rust projects only. For example:
[source,json]
----
{
"key": "ctrl+i",
"command": "rust-analyzer.toggleInlayHints",
"when": "inRustProject"
}
----
More about `when` clause contexts https://code.visualstudio.com/docs/getstarted/keybindings#_when-clause-contexts[here].
==== Setting runnable environment variables
You can use "rust-analyzer.runnableEnv" setting to define runnable environment-specific substitution variables.
The simplest way for all runnables in a bunch:
```jsonc
"rust-analyzer.runnableEnv": {
"RUN_SLOW_TESTS": "1"
}
```
Or it is possible to specify vars more granularly:
```jsonc
"rust-analyzer.runnableEnv": [
{
// "mask": null, // null mask means that this rule will be applied for all runnables
env: {
"APP_ID": "1",
"APP_DATA": "asdf"
}
},
{
"mask": "test_name",
"env": {
"APP_ID": "2", // overwrites only APP_ID
}
}
]
```
You can use any valid RegExp as a mask. Also note that a full runnable name is something like *run bin_or_example_name*, *test some::mod::test_name* or *test-mod some::mod*, so it is possible to distinguish binaries, single tests, and test modules with this masks: `"^run"`, `"^test "` (the trailing space matters!), and `"^test-mod"` respectively.
==== Compiler feedback from external commands
Instead of relying on the built-in `cargo check`, you can configure Code to run a command in the background and use the `$rustc-watch` problem matcher to generate inline error markers from its output.
To do this you need to create a new https://code.visualstudio.com/docs/editor/tasks[VS Code Task] and set `rust-analyzer.checkOnSave.enable: false` in preferences.
For example, if you want to run https://crates.io/crates/cargo-watch[`cargo watch`] instead, you might add the following to `.vscode/tasks.json`:
```json
{
"label": "Watch",
"group": "build",
"type": "shell",
"command": "cargo watch",
"problemMatcher": "$rustc-watch",
"isBackground": true
}
```