rust/src/libstd/result.rs
2013-07-27 23:42:53 -07:00

411 lines
11 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A type representing either success or failure
#[allow(missing_doc)];
use clone::Clone;
use cmp::Eq;
use either;
use iterator::IteratorUtil;
use option::{None, Option, Some};
use vec;
use vec::{OwnedVector, ImmutableVector};
use container::Container;
/// The result type
#[deriving(Clone, Eq)]
pub enum Result<T, U> {
/// Contains the successful result value
Ok(T),
/// Contains the error value
Err(U)
}
impl<T, E> Result<T, E> {
/**
* Convert to the `either` type
*
* `Ok` result variants are converted to `either::Right` variants, `Err`
* result variants are converted to `either::Left`.
*/
#[inline]
pub fn to_either(self)-> either::Either<E, T>{
match self {
Ok(t) => either::Right(t),
Err(e) => either::Left(e),
}
}
/**
* Get a reference to the value out of a successful result
*
* # Failure
*
* If the result is an error
*/
#[inline]
pub fn get_ref<'a>(&'a self) -> &'a T {
match *self {
Ok(ref t) => t,
Err(ref e) => fail!("get_ref called on `Err` result: %?", *e),
}
}
/// Returns true if the result is `Ok`
#[inline]
pub fn is_ok(&self) -> bool {
match *self {
Ok(_) => true,
Err(_) => false
}
}
/// Returns true if the result is `Err`
#[inline]
pub fn is_err(&self) -> bool {
!self.is_ok()
}
/**
* Call a method based on a previous result
*
* If `self` is `Ok` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `self` is `Err` then it is
* immediately returned. This function can be used to compose the results
* of two functions.
*
* Example:
*
* do read_file(file).iter |buf| {
* print_buf(buf)
* }
*/
#[inline]
pub fn iter(&self, f: &fn(&T)) {
match *self {
Ok(ref t) => f(t),
Err(_) => (),
}
}
/**
* Call a method based on a previous result
*
* If `self` is `Err` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `self` is `Ok` then it is
* immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
#[inline]
pub fn iter_err(&self, f: &fn(&E)) {
match *self {
Ok(_) => (),
Err(ref e) => f(e),
}
}
/// Unwraps a result, assuming it is an `Ok(T)`
#[inline]
pub fn unwrap(self) -> T {
match self {
Ok(t) => t,
Err(_) => fail!("unwrap called on an `Err` result"),
}
}
/// Unwraps a result, assuming it is an `Err(U)`
#[inline]
pub fn unwrap_err(self) -> E {
match self {
Err(e) => e,
Ok(_) => fail!("unwrap called on an `Ok` result"),
}
}
/**
* Call a method based on a previous result
*
* If `self` is `Ok` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `self` is `Err` then it is
* immediately returned. This function can be used to compose the results
* of two functions.
*
* Example:
*
* let res = do read_file(file) |buf| {
* Ok(parse_bytes(buf))
* };
*/
#[inline]
pub fn chain<U>(self, op: &fn(T) -> Result<U, E>) -> Result<U, E> {
match self {
Ok(t) => op(t),
Err(e) => Err(e),
}
}
/**
* Call a function based on a previous result
*
* If `self` is `Err` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `self` is `Ok` then it is
* immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
#[inline]
pub fn chain_err<F>(self, op: &fn(E) -> Result<T, F>) -> Result<T, F> {
match self {
Ok(t) => Ok(t),
Err(e) => op(e),
}
}
}
impl<T: Clone, E> Result<T, E> {
/**
* Get the value out of a successful result
*
* # Failure
*
* If the result is an error
*/
#[inline]
pub fn get(&self) -> T {
match *self {
Ok(ref t) => t.clone(),
Err(ref e) => fail!("get called on `Err` result: %?", *e),
}
}
/**
* Call a method based on a previous result
*
* If `self` is `Err` then the value is extracted and passed to `op`
* whereupon `op`s result is wrapped in an `Err` and returned. if `self` is
* `Ok` then it is immediately returned. This function can be used to pass
* through a successful result while handling an error.
*/
#[inline]
pub fn map_err<F:Clone>(&self, op: &fn(&E) -> F) -> Result<T,F> {
match *self {
Ok(ref t) => Ok(t.clone()),
Err(ref e) => Err(op(e))
}
}
}
impl<T, E: Clone> Result<T, E> {
/**
* Get the value out of an error result
*
* # Failure
*
* If the result is not an error
*/
#[inline]
pub fn get_err(&self) -> E {
match *self {
Err(ref e) => e.clone(),
Ok(_) => fail!("get_err called on `Ok` result")
}
}
/**
* Call a method based on a previous result
*
* If `self` is `Ok` then the value is extracted and passed to `op`
* whereupon `op`s result is wrapped in `Ok` and returned. if `self` is
* `Err` then it is immediately returned. This function can be used to
* compose the results of two functions.
*
* Example:
*
* let res = do read_file(file).map |buf| {
* parse_bytes(buf)
* };
*/
#[inline]
pub fn map<U:Clone>(&self, op: &fn(&T) -> U) -> Result<U,E> {
match *self {
Ok(ref t) => Ok(op(t)),
Err(ref e) => Err(e.clone())
}
}
}
/**
* Maps each element in the vector `ts` using the operation `op`. Should an
* error occur, no further mappings are performed and the error is returned.
* Should no error occur, a vector containing the result of each map is
* returned.
*
* Here is an example which increments every integer in a vector,
* checking for overflow:
*
* fn inc_conditionally(x: uint) -> result<uint,str> {
* if x == uint::max_value { return Err("overflow"); }
* else { return Ok(x+1u); }
* }
* map(~[1u, 2u, 3u], inc_conditionally).chain {|incd|
* assert!(incd == ~[2u, 3u, 4u]);
* }
*/
#[inline]
pub fn map_vec<T,U,V>(ts: &[T], op: &fn(&T) -> Result<V,U>)
-> Result<~[V],U> {
let mut vs: ~[V] = vec::with_capacity(ts.len());
for ts.iter().advance |t| {
match op(t) {
Ok(v) => vs.push(v),
Err(u) => return Err(u)
}
}
return Ok(vs);
}
#[inline]
#[allow(missing_doc)]
pub fn map_opt<T,
U,
V>(
o_t: &Option<T>,
op: &fn(&T) -> Result<V,U>)
-> Result<Option<V>,U> {
match *o_t {
None => Ok(None),
Some(ref t) => match op(t) {
Ok(v) => Ok(Some(v)),
Err(e) => Err(e)
}
}
}
/**
* Same as map, but it operates over two parallel vectors.
*
* A precondition is used here to ensure that the vectors are the same
* length. While we do not often use preconditions in the standard
* library, a precondition is used here because result::t is generally
* used in 'careful' code contexts where it is both appropriate and easy
* to accommodate an error like the vectors being of different lengths.
*/
#[inline]
pub fn map_vec2<S,T,U,V>(ss: &[S], ts: &[T],
op: &fn(&S,&T) -> Result<V,U>) -> Result<~[V],U> {
assert!(vec::same_length(ss, ts));
let n = ts.len();
let mut vs = vec::with_capacity(n);
let mut i = 0u;
while i < n {
match op(&ss[i],&ts[i]) {
Ok(v) => vs.push(v),
Err(u) => return Err(u)
}
i += 1u;
}
return Ok(vs);
}
/**
* Applies op to the pairwise elements from `ss` and `ts`, aborting on
* error. This could be implemented using `map_zip()` but it is more efficient
* on its own as no result vector is built.
*/
#[inline]
pub fn iter_vec2<S,T,U>(ss: &[S], ts: &[T],
op: &fn(&S,&T) -> Result<(),U>) -> Result<(),U> {
assert!(vec::same_length(ss, ts));
let n = ts.len();
let mut i = 0u;
while i < n {
match op(&ss[i],&ts[i]) {
Ok(()) => (),
Err(u) => return Err(u)
}
i += 1u;
}
return Ok(());
}
#[cfg(test)]
mod tests {
use super::*;
use either;
pub fn op1() -> Result<int, ~str> { Ok(666) }
pub fn op2(i: int) -> Result<uint, ~str> {
Ok(i as uint + 1u)
}
pub fn op3() -> Result<int, ~str> { Err(~"sadface") }
#[test]
pub fn chain_success() {
assert_eq!(op1().chain(op2).get(), 667u);
}
#[test]
pub fn chain_failure() {
assert_eq!(op3().chain( op2).get_err(), ~"sadface");
}
#[test]
pub fn test_impl_iter() {
let mut valid = false;
Ok::<~str, ~str>(~"a").iter(|_x| valid = true);
assert!(valid);
Err::<~str, ~str>(~"b").iter(|_x| valid = false);
assert!(valid);
}
#[test]
pub fn test_impl_iter_err() {
let mut valid = true;
Ok::<~str, ~str>(~"a").iter_err(|_x| valid = false);
assert!(valid);
valid = false;
Err::<~str, ~str>(~"b").iter_err(|_x| valid = true);
assert!(valid);
}
#[test]
pub fn test_impl_map() {
assert_eq!(Ok::<~str, ~str>(~"a").map(|_x| ~"b"), Ok(~"b"));
assert_eq!(Err::<~str, ~str>(~"a").map(|_x| ~"b"), Err(~"a"));
}
#[test]
pub fn test_impl_map_err() {
assert_eq!(Ok::<~str, ~str>(~"a").map_err(|_x| ~"b"), Ok(~"a"));
assert_eq!(Err::<~str, ~str>(~"a").map_err(|_x| ~"b"), Err(~"b"));
}
#[test]
pub fn test_get_ref_method() {
let foo: Result<int, ()> = Ok(100);
assert_eq!(*foo.get_ref(), 100);
}
#[test]
pub fn test_to_either() {
let r: Result<int, ()> = Ok(100);
let err: Result<(), int> = Err(404);
assert_eq!(r.to_either(), either::Right(100));
assert_eq!(err.to_either(), either::Left(404));
}
}