rust/src/lib/extfmt.rs
2011-07-26 14:06:02 +02:00

433 lines
15 KiB
Rust

/* The 'fmt' extension is modeled on the posix printf system.
*
* A posix conversion ostensibly looks like this:
*
* %[parameter][flags][width][.precision][length]type
*
* Given the different numeric type bestiary we have, we omit the 'length'
* parameter and support slightly different conversions for 'type':
*
* %[parameter][flags][width][.precision]type
*
* we also only support translating-to-rust a tiny subset of the possible
* combinations at the moment.
*/
import option::none;
import option::some;
/*
* We have a 'ct' (compile-time) module that parses format strings into a
* sequence of conversions. From those conversions AST fragments are built
* that call into properly-typed functions in the 'rt' (run-time) module.
* Each of those run-time conversion functions accepts another conversion
* description that specifies how to format its output.
*
* The building of the AST is currently done in a module inside the compiler,
* but should migrate over here as the plugin interface is defined.
*/
// Functions used by the fmt extension at compile time
mod ct {
tag signedness { signed; unsigned; }
tag caseness { case_upper; case_lower; }
tag ty {
ty_bool;
ty_str;
ty_char;
ty_int(signedness);
ty_bits;
ty_hex(caseness);
ty_octal;
// FIXME: More types
}
tag flag {
flag_left_justify;
flag_left_zero_pad;
flag_space_for_sign;
flag_sign_always;
flag_alternate;
}
tag count {
count_is(int);
count_is_param(int);
count_is_next_param;
count_implied;
}
// A formatted conversion from an expression to a string
type conv =
rec(option::t[int] param,
vec[flag] flags,
count width,
count precision,
ty ty);
// A fragment of the output sequence
tag piece { piece_string(str); piece_conv(conv); }
type error_fn = fn(str) -> ! ;
fn parse_fmt_string(str s, error_fn error) -> vec[piece] {
let vec[piece] pieces = [];
auto lim = str::byte_len(s);
auto buf = "";
fn flush_buf(str buf, &mutable vec[piece] pieces) -> str {
if (str::byte_len(buf) > 0u) {
auto piece = piece_string(buf);
pieces += [piece];
}
ret "";
}
auto i = 0u;
while (i < lim) {
auto curr = str::substr(s, i, 1u);
if (str::eq(curr, "%")) {
i += 1u;
if (i >= lim) {
error("unterminated conversion at end of string");
}
auto curr2 = str::substr(s, i, 1u);
if (str::eq(curr2, "%")) {
i += 1u;
} else {
buf = flush_buf(buf, pieces);
auto rs = parse_conversion(s, i, lim, error);
pieces += [rs.piece];
i = rs.next;
}
} else { buf += curr; i += 1u; }
}
buf = flush_buf(buf, pieces);
ret pieces;
}
fn peek_num(str s, uint i, uint lim)
-> option::t[rec(uint num, uint next)] {
if (i >= lim) { ret none; }
auto c = s.(i);
if (!('0' as u8 <= c && c <= '9' as u8)) {
ret option::none;
}
auto n = c - ('0' as u8) as uint;
ret alt (peek_num(s, i + 1u, lim)) {
case (none) { some(rec(num=n, next=i + 1u)) }
case (some(?next)) {
auto m = next.num;
auto j = next.next;
some(rec(num=n * 10u + m, next=j))
}
};
}
fn parse_conversion(str s, uint i, uint lim, error_fn error)
-> rec(piece piece, uint next) {
auto parm = parse_parameter(s, i, lim);
auto flags = parse_flags(s, parm.next, lim);
auto width = parse_count(s, flags.next, lim);
auto prec = parse_precision(s, width.next, lim);
auto ty = parse_type(s, prec.next, lim, error);
ret rec(piece=piece_conv(rec(param=parm.param,
flags=flags.flags,
width=width.count,
precision=prec.count,
ty=ty.ty)),
next=ty.next);
}
fn parse_parameter(str s, uint i, uint lim)
-> rec(option::t[int] param, uint next) {
if (i >= lim) { ret rec(param=none, next=i); }
auto num = peek_num(s, i, lim);
ret alt (num) {
case (none) { rec(param=none, next=i) }
case (some(?t)) {
auto n = t.num;
auto j = t.next;
if (j < lim && s.(j) == '$' as u8) {
rec(param=some(n as int), next=j + 1u)
} else { rec(param=none, next=i) }
}
};
}
fn parse_flags(str s, uint i, uint lim)
-> rec(vec[flag] flags, uint next) {
let vec[flag] noflags = [];
if (i >= lim) { ret rec(flags=noflags, next=i); }
fn more_(flag f, str s, uint i, uint lim)
-> rec(vec[flag] flags, uint next) {
auto next = parse_flags(s, i + 1u, lim);
auto rest = next.flags;
auto j = next.next;
let vec[flag] curr = [f];
ret rec(flags=curr + rest, next=j);
}
auto more = bind more_(_, s, i, lim);
auto f = s.(i);
ret if (f == '-' as u8) {
more(flag_left_justify)
} else if (f == '0' as u8) {
more(flag_left_zero_pad)
} else if (f == ' ' as u8) {
more(flag_space_for_sign)
} else if (f == '+' as u8) {
more(flag_sign_always)
} else if (f == '#' as u8) {
more(flag_alternate)
} else { rec(flags=noflags, next=i) };
}
fn parse_count(str s, uint i, uint lim)
-> rec(count count, uint next) {
ret if (i >= lim) {
rec(count=count_implied, next=i)
} else if (s.(i) == '*' as u8) {
auto param = parse_parameter(s, i + 1u, lim);
auto j = param.next;
alt (param.param) {
case (none) { rec(count=count_is_next_param, next=j) }
case (some(?n)) { rec(count=count_is_param(n), next=j) }
}
} else {
auto num = peek_num(s, i, lim);
alt (num) {
case (none) { rec(count=count_implied, next=i) }
case (some(?num)) { rec(count=count_is(num.num as int),
next=num.next) }
}
};
}
fn parse_precision(str s, uint i, uint lim)
-> rec(count count, uint next) {
ret if (i >= lim) {
rec(count=count_implied, next=i)
} else if (s.(i) == '.' as u8) {
auto count = parse_count(s, i + 1u, lim);
// If there were no digits specified, i.e. the precision
// was ".", then the precision is 0
alt (count.count) {
case (count_implied) { rec(count=count_is(0),
next=count.next) }
case (_) { count }
}
} else { rec(count=count_implied, next=i) };
}
fn parse_type(str s, uint i, uint lim, error_fn error)
-> rec(ty ty, uint next) {
if (i >= lim) { error("missing type in conversion"); }
auto tstr = str::substr(s, i, 1u);
auto t =
if (str::eq(tstr, "b")) {
ty_bool
} else if (str::eq(tstr, "s")) {
ty_str
} else if (str::eq(tstr, "c")) {
ty_char
} else if (str::eq(tstr, "d") || str::eq(tstr, "i")) {
// TODO: Do we really want two signed types here?
// How important is it to be printf compatible?
ty_int(signed)
} else if (str::eq(tstr, "u")) {
ty_int(unsigned)
} else if (str::eq(tstr, "x")) {
ty_hex(case_lower)
} else if (str::eq(tstr, "X")) {
ty_hex(case_upper)
} else if (str::eq(tstr, "t")) {
ty_bits
} else if (str::eq(tstr, "o")) {
ty_octal
} else { error("unknown type in conversion: " + tstr) };
ret rec(ty=t, next=i + 1u);
}
}
// Functions used by the fmt extension at runtime. For now there are a lot of
// decisions made a runtime. If it proves worthwhile then some of these
// conditions can be evaluated at compile-time. For now though it's cleaner to
// implement it this way, I think.
mod rt {
tag flag {
flag_left_justify;
flag_left_zero_pad;
flag_space_for_sign;
flag_sign_always;
flag_alternate;
// FIXME: This is a hack to avoid creating 0-length vec exprs,
// which have some difficulty typechecking currently. See
// comments in front::extfmt::make_flags
flag_none;
}
tag count { count_is(int); count_implied; }
tag ty { ty_default; ty_bits; ty_hex_upper; ty_hex_lower; ty_octal; }
// FIXME: May not want to use a vector here for flags;
// instead just use a bool per flag
type conv = rec(vec[flag] flags, count width, count precision, ty ty);
fn conv_int(&conv cv, int i) -> str {
auto radix = 10u;
auto prec = get_int_precision(cv);
auto s = int_to_str_prec(i, radix, prec);
if (0 <= i) {
if (have_flag(cv.flags, flag_sign_always)) {
s = "+" + s;
} else if (have_flag(cv.flags, flag_space_for_sign)) {
s = " " + s;
}
}
ret pad(cv, s, pad_signed);
}
fn conv_uint(&conv cv, uint u) -> str {
auto prec = get_int_precision(cv);
auto rs =
alt (cv.ty) {
case (ty_default) { uint_to_str_prec(u, 10u, prec) }
case (ty_hex_lower) { uint_to_str_prec(u, 16u, prec) }
case (ty_hex_upper) {
str::to_upper(uint_to_str_prec(u, 16u, prec))
}
case (ty_bits) { uint_to_str_prec(u, 2u, prec) }
case (ty_octal) { uint_to_str_prec(u, 8u, prec) }
};
ret pad(cv, rs, pad_unsigned);
}
fn conv_bool(&conv cv, bool b) -> str {
auto s = if (b) { "true" } else { "false" };
// run the boolean conversion through the string conversion logic,
// giving it the same rules for precision, etc.
ret conv_str(cv, s);
}
fn conv_char(&conv cv, char c) -> str {
ret pad(cv, str::from_char(c), pad_nozero);
}
fn conv_str(&conv cv, str s) -> str {
auto unpadded =
alt (cv.precision) {
case (count_implied) { s }
case (count_is(?max)) {
// For strings, precision is the maximum characters
// displayed
if (max as uint < str::char_len(s)) {
// FIXME: substr works on bytes, not chars!
str::substr(s, 0u, max as uint)
} else { s }
}
};
ret pad(cv, unpadded, pad_nozero);
}
// Convert an int to string with minimum number of digits. If precision is
// 0 and num is 0 then the result is the empty string.
fn int_to_str_prec(int num, uint radix, uint prec) -> str {
ret if (num < 0) {
"-" + uint_to_str_prec(-num as uint, radix, prec)
} else { uint_to_str_prec(num as uint, radix, prec) };
}
// Convert a uint to string with a minimum number of digits. If precision
// is 0 and num is 0 then the result is the empty string. Could move this
// to uint: but it doesn't seem all that useful.
fn uint_to_str_prec(uint num, uint radix, uint prec) -> str {
ret if (prec == 0u && num == 0u) {
""
} else {
auto s = uint::to_str(num, radix);
auto len = str::char_len(s);
if (len < prec) {
auto diff = prec - len;
auto pad = str_init_elt('0', diff);
pad + s
} else { s }
};
}
fn get_int_precision(&conv cv) -> uint {
ret alt (cv.precision) {
case (count_is(?c)) { c as uint }
case (count_implied) { 1u }
};
}
// FIXME: This might be useful in str: but needs to be utf8 safe first
fn str_init_elt(char c, uint n_elts) -> str {
auto svec = vec::init_elt[u8](c as u8, n_elts);
ret str::from_bytes(svec);
}
tag pad_mode { pad_signed; pad_unsigned; pad_nozero; }
fn pad(&conv cv, str s, pad_mode mode) -> str {
auto uwidth;
alt (cv.width) {
case (count_implied) { ret s; }
case (count_is(?width)) {
// FIXME: Maybe width should be uint
uwidth = width as uint;
}
}
auto strlen = str::char_len(s);
if (uwidth <= strlen) { ret s; }
auto padchar = ' ';
auto diff = uwidth - strlen;
if (have_flag(cv.flags, flag_left_justify)) {
auto padstr = str_init_elt(padchar, diff);
ret s + padstr;
}
auto might_zero_pad = false;
auto signed = false;
alt (mode) {
case (pad_nozero) {
// fallthrough
}
case (pad_signed) { might_zero_pad = true; signed = true; }
case (pad_unsigned) { might_zero_pad = true; }
}
fn have_precision(&conv cv) -> bool {
ret alt (cv.precision) {
case (count_implied) { false }
case (_) { true }
};
}
auto zero_padding = false;
if (might_zero_pad && have_flag(cv.flags, flag_left_zero_pad) &&
!have_precision(cv)) {
padchar = '0';
zero_padding = true;
}
auto padstr = str_init_elt(padchar, diff);
// This is completely heinous. If we have a signed value then
// potentially rip apart the intermediate result and insert some
// zeros. It may make sense to convert zero padding to a precision
// instead.
if (signed && zero_padding && str::byte_len(s) > 0u) {
auto head = s.(0);
if (head == '+' as u8 || head == '-' as u8 || head == ' ' as u8) {
auto headstr = str::unsafe_from_bytes([head]);
auto bytelen = str::byte_len(s);
auto numpart = str::substr(s, 1u, bytelen - 1u);
ret headstr + padstr + numpart;
}
}
ret padstr + s;
}
fn have_flag(vec[flag] flags, flag f) -> bool {
for (flag candidate in flags) { if (candidate == f) { ret true; } }
ret false;
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End: