rust/crates/ra_hir/src/ty.rs
Florian Diebold 7faae12311 Remove FnSig from FnDef type
It doesn't need to be in there since it's just information from the def. Another
step towards aligning Ty with Chalk's representation.
2019-03-16 17:29:55 +01:00

379 lines
12 KiB
Rust

//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.
mod autoderef;
pub(crate) mod primitive;
#[cfg(test)]
mod tests;
pub(crate) mod method_resolution;
mod op;
mod lower;
mod infer;
pub(crate) mod display;
use std::sync::Arc;
use std::{fmt, mem};
use crate::{Name, AdtDef, type_ref::Mutability, db::HirDatabase};
pub(crate) use lower::{TypableDef, CallableDef, type_for_def, type_for_field, callable_item_sig};
pub(crate) use infer::{infer, InferenceResult, InferTy};
use display::{HirDisplay, HirFormatter};
/// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Ty {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive integer type. For example, `i32`.
Int(primitive::UncertainIntTy),
/// A primitive floating-point type. For example, `f64`.
Float(primitive::UncertainFloatTy),
/// Structures, enumerations and unions.
Adt {
/// The definition of the struct/enum.
def_id: AdtDef,
/// Substitutions for the generic parameters of the type.
substs: Substs,
},
/// The pointee of a string slice. Written as `str`.
Str,
/// The pointee of an array slice. Written as `[T]`.
Slice(Arc<Ty>),
/// An array with the given length. Written as `[T; n]`.
Array(Arc<Ty>),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(Arc<Ty>, Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Arc<Ty>, Mutability),
/// The anonymous type of a function declaration/definition. Each
/// function has a unique type, which is output (for a function
/// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
///
/// This includes tuple struct / enum variant constructors as well.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar = foo; // bar: fn() -> i32 {foo}
/// ```
FnDef {
/// The definition of the function / constructor.
def: CallableDef,
/// Substitutions for the generic parameters of the type
substs: Substs,
},
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(FnSig),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(Arc<[Ty]>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
Param {
/// The index of the parameter (starting with parameters from the
/// surrounding impl, then the current function).
idx: u32,
/// The name of the parameter, for displaying.
name: Name,
},
/// A type variable used during type checking. Not to be confused with a
/// type parameter.
Infer(InferTy),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Substs(Arc<[Ty]>);
impl Substs {
pub fn empty() -> Substs {
Substs(Arc::new([]))
}
pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = self.0.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
self.0 = v.into();
}
}
/// A function signature.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
params_and_return: Arc<[Ty]>,
}
impl FnSig {
pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
params.push(ret);
FnSig { params_and_return: params.into() }
}
pub fn params(&self) -> &[Ty] {
&self.params_and_return[0..self.params_and_return.len() - 1]
}
pub fn ret(&self) -> &Ty {
&self.params_and_return[self.params_and_return.len() - 1]
}
pub fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = self.params_and_return.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
self.params_and_return = v.into();
}
}
impl Ty {
pub fn unit() -> Self {
Ty::Tuple(Arc::new([]))
}
pub fn walk(&self, f: &mut impl FnMut(&Ty)) {
match self {
Ty::Slice(t) | Ty::Array(t) => t.walk(f),
Ty::RawPtr(t, _) => t.walk(f),
Ty::Ref(t, _) => t.walk(f),
Ty::Tuple(ts) => {
for t in ts.iter() {
t.walk(f);
}
}
Ty::FnPtr(sig) => {
for input in sig.params() {
input.walk(f);
}
sig.ret().walk(f);
}
Ty::FnDef { substs, .. } => {
for t in substs.0.iter() {
t.walk(f);
}
}
Ty::Adt { substs, .. } => {
for t in substs.0.iter() {
t.walk(f);
}
}
Ty::Bool
| Ty::Char
| Ty::Int(_)
| Ty::Float(_)
| Ty::Str
| Ty::Never
| Ty::Param { .. }
| Ty::Infer(_)
| Ty::Unknown => {}
}
f(self);
}
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
match self {
Ty::Slice(t) | Ty::Array(t) => Arc::make_mut(t).walk_mut(f),
Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f),
Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f),
Ty::Tuple(ts) => {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = ts.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
*ts = v.into();
}
Ty::FnPtr(sig) => {
sig.walk_mut(f);
}
Ty::FnDef { substs, .. } => {
substs.walk_mut(f);
}
Ty::Adt { substs, .. } => {
substs.walk_mut(f);
}
Ty::Bool
| Ty::Char
| Ty::Int(_)
| Ty::Float(_)
| Ty::Str
| Ty::Never
| Ty::Param { .. }
| Ty::Infer(_)
| Ty::Unknown => {}
}
f(self);
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty);
});
self
}
fn builtin_deref(&self) -> Option<Ty> {
match self {
Ty::Ref(t, _) => Some(Ty::clone(t)),
Ty::RawPtr(t, _) => Some(Ty::clone(t)),
_ => None,
}
}
/// If this is a type with type parameters (an ADT or function), replaces
/// the `Substs` for these type parameters with the given ones. (So e.g. if
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
/// `Option<u32>` afterwards.)
pub fn apply_substs(self, substs: Substs) -> Ty {
match self {
Ty::Adt { def_id, .. } => Ty::Adt { def_id, substs },
Ty::FnDef { def, .. } => Ty::FnDef { def, substs },
_ => self,
}
}
/// Replaces type parameters in this type using the given `Substs`. (So e.g.
/// if `self` is `&[T]`, where type parameter T has index 0, and the
/// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
pub fn subst(self, substs: &Substs) -> Ty {
self.fold(&mut |ty| match ty {
Ty::Param { idx, name } => {
if (idx as usize) < substs.0.len() {
substs.0[idx as usize].clone()
} else {
Ty::Param { idx, name }
}
}
ty => ty,
})
}
/// Returns the type parameters of this type if it has some (i.e. is an ADT
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
fn substs(&self) -> Option<Substs> {
match self {
Ty::Adt { substs, .. } | Ty::FnDef { substs, .. } => Some(substs.clone()),
_ => None,
}
}
}
impl HirDisplay for &Ty {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for Ty {
fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result {
match self {
Ty::Bool => write!(f, "bool")?,
Ty::Char => write!(f, "char")?,
Ty::Int(t) => write!(f, "{}", t)?,
Ty::Float(t) => write!(f, "{}", t)?,
Ty::Str => write!(f, "str")?,
Ty::Slice(t) | Ty::Array(t) => {
write!(f, "[{}]", t.display(f.db))?;
}
Ty::RawPtr(t, m) => {
write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
}
Ty::Ref(t, m) => {
write!(f, "&{}{}", m.as_keyword_for_ref(), t.display(f.db))?;
}
Ty::Never => write!(f, "!")?,
Ty::Tuple(ts) => {
if ts.len() == 1 {
write!(f, "({},)", ts[0].display(f.db))?;
} else {
write!(f, "(")?;
f.write_joined(&**ts, ", ")?;
write!(f, ")")?;
}
}
Ty::FnPtr(sig) => {
write!(f, "fn(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
Ty::FnDef { def, substs, .. } => {
let sig = f.db.callable_item_signature(*def);
let name = match def {
CallableDef::Function(ff) => ff.name(f.db),
CallableDef::Struct(s) => s.name(f.db).unwrap_or_else(Name::missing),
CallableDef::EnumVariant(e) => e.name(f.db).unwrap_or_else(Name::missing),
};
match def {
CallableDef::Function(_) => write!(f, "fn {}", name)?,
CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?,
}
if substs.0.len() > 0 {
write!(f, "<")?;
f.write_joined(&*substs.0, ", ")?;
write!(f, ">")?;
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
Ty::Adt { def_id, substs, .. } => {
let name = match def_id {
AdtDef::Struct(s) => s.name(f.db),
AdtDef::Enum(e) => e.name(f.db),
}
.unwrap_or_else(Name::missing);
write!(f, "{}", name)?;
if substs.0.len() > 0 {
write!(f, "<")?;
f.write_joined(&*substs.0, ", ")?;
write!(f, ">")?;
}
}
Ty::Param { name, .. } => write!(f, "{}", name)?,
Ty::Unknown => write!(f, "{{unknown}}")?,
Ty::Infer(..) => write!(f, "_")?,
}
Ok(())
}
}