rust/src/types.rs
2015-08-23 06:26:31 +02:00

373 lines
14 KiB
Rust

use rustc::lint::*;
use syntax::ast;
use syntax::ast::*;
use syntax::ast_util::{is_comparison_binop, binop_to_string};
use syntax::codemap::Span;
use syntax::visit::{FnKind, Visitor, walk_ty};
use rustc::middle::ty;
use syntax::codemap::ExpnInfo;
use utils::{in_macro, match_type, snippet, span_lint, span_help_and_lint, in_external_macro};
use utils::{LL_PATH, VEC_PATH};
/// Handles all the linting of funky types
#[allow(missing_copy_implementations)]
pub struct TypePass;
declare_lint!(pub BOX_VEC, Warn,
"usage of `Box<Vec<T>>`, vector elements are already on the heap");
declare_lint!(pub LINKEDLIST, Warn,
"usage of LinkedList, usually a vector is faster, or a more specialized data \
structure like a RingBuf");
impl LintPass for TypePass {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_VEC, LINKEDLIST)
}
fn check_ty(&mut self, cx: &Context, ast_ty: &ast::Ty) {
if let Some(ty) = cx.tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
if let ty::TyBox(ref inner) = ty.sty {
if match_type(cx, inner, &VEC_PATH) {
span_help_and_lint(
cx, BOX_VEC, ast_ty.span,
"you seem to be trying to use `Box<Vec<T>>`. Did you mean to use `Vec<T>`?",
"`Vec<T>` is already on the heap, `Box<Vec<T>>` makes an extra allocation");
}
}
else if match_type(cx, ty, &LL_PATH) {
span_help_and_lint(
cx, LINKEDLIST, ast_ty.span,
"I see you're using a LinkedList! Perhaps you meant some other data structure?",
"a RingBuf might work");
}
}
}
}
#[allow(missing_copy_implementations)]
pub struct LetPass;
declare_lint!(pub LET_UNIT_VALUE, Warn,
"creating a let binding to a value of unit type, which usually can't be used afterwards");
fn check_let_unit(cx: &Context, decl: &Decl, info: Option<&ExpnInfo>) {
if in_macro(cx, info) { return; }
if let DeclLocal(ref local) = decl.node {
let bindtype = &cx.tcx.pat_ty(&*local.pat).sty;
if *bindtype == ty::TyTuple(vec![]) {
span_lint(cx, LET_UNIT_VALUE, decl.span, &format!(
"this let-binding has unit value. Consider omitting `let {} =`",
snippet(cx, local.pat.span, "..")));
}
}
}
impl LintPass for LetPass {
fn get_lints(&self) -> LintArray {
lint_array!(LET_UNIT_VALUE)
}
fn check_decl(&mut self, cx: &Context, decl: &Decl) {
cx.sess().codemap().with_expn_info(
decl.span.expn_id,
|info| check_let_unit(cx, decl, info));
}
}
declare_lint!(pub UNIT_CMP, Warn,
"comparing unit values (which is always `true` or `false`, respectively)");
#[allow(missing_copy_implementations)]
pub struct UnitCmp;
impl LintPass for UnitCmp {
fn get_lints(&self) -> LintArray {
lint_array!(UNIT_CMP)
}
fn check_expr(&mut self, cx: &Context, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, _) = expr.node {
let op = cmp.node;
let sty = &cx.tcx.expr_ty(left).sty;
if *sty == ty::TyTuple(vec![]) && is_comparison_binop(op) {
let result = match op {
BiEq | BiLe | BiGe => "true",
_ => "false"
};
span_lint(cx, UNIT_CMP, expr.span, &format!(
"{}-comparison of unit values detected. This will always be {}",
binop_to_string(op), result));
}
}
}
}
pub struct CastPass;
declare_lint!(pub CAST_PRECISION_LOSS, Allow,
"casts that cause loss of precision, e.g `x as f32` where `x: u64`");
declare_lint!(pub CAST_SIGN_LOSS, Allow,
"casts from signed types to unsigned types, e.g `x as u32` where `x: i32`");
declare_lint!(pub CAST_POSSIBLE_TRUNCATION, Allow,
"casts that may cause truncation of the value, e.g `x as u8` where `x: u32`, or `x as i32` where `x: f32`");
declare_lint!(pub CAST_POSSIBLE_WRAP, Allow,
"casts that may cause wrapping around the value, e.g `x as i32` where `x: u32` and `x > i32::MAX`");
/// Returns the size in bits of an integral type.
/// Will return 0 if the type is not an int or uint variant
fn int_ty_to_nbits(typ: &ty::TyS) -> usize {
let n = match typ.sty {
ty::TyInt(i) => 4 << (i as usize),
ty::TyUint(u) => 4 << (u as usize),
_ => 0
};
// n == 4 is the usize/isize case
if n == 4 { ::std::usize::BITS } else { n }
}
fn is_isize_or_usize(typ: &ty::TyS) -> bool {
match typ.sty {
ty::TyInt(ast::TyIs) | ty::TyUint(ast::TyUs) => true,
_ => false
}
}
fn span_precision_loss_lint(cx: &Context, expr: &Expr, cast_from: &ty::TyS, cast_to_f64: bool) {
let mantissa_nbits = if cast_to_f64 {52} else {23};
let arch_dependent = is_isize_or_usize(cast_from) && cast_to_f64;
let arch_dependent_str = "on targets with 64-bit wide pointers ";
let from_nbits_str = if arch_dependent {"64".to_owned()}
else if is_isize_or_usize(cast_from) {"32 or 64".to_owned()}
else {int_ty_to_nbits(cast_from).to_string()};
span_lint(cx, CAST_PRECISION_LOSS, expr.span,
&format!("casting {0} to {1} causes a loss of precision {2}\
({0} is {3} bits wide, but {1}'s mantissa is only {4} bits wide)",
cast_from, if cast_to_f64 {"f64"} else {"f32"},
if arch_dependent {arch_dependent_str} else {""},
from_nbits_str,
mantissa_nbits));
}
enum ArchSuffix {
_32, _64, None
}
fn check_truncation_and_wrapping(cx: &Context, expr: &Expr, cast_from: &ty::TyS, cast_to: &ty::TyS) {
let arch_64_suffix = " on targets with 64-bit wide pointers";
let arch_32_suffix = " on targets with 32-bit wide pointers";
let cast_unsigned_to_signed = !cast_from.is_signed() && cast_to.is_signed();
let (from_nbits, to_nbits) = (int_ty_to_nbits(cast_from), int_ty_to_nbits(cast_to));
let (span_truncation, suffix_truncation, span_wrap, suffix_wrap) =
match (is_isize_or_usize(cast_from), is_isize_or_usize(cast_to)) {
(true, true) | (false, false) => (
to_nbits < from_nbits,
ArchSuffix::None,
to_nbits == from_nbits && cast_unsigned_to_signed,
ArchSuffix::None
),
(true, false) => (
to_nbits <= 32,
if to_nbits == 32 {ArchSuffix::_64} else {ArchSuffix::None},
to_nbits <= 32 && cast_unsigned_to_signed,
ArchSuffix::_32
),
(false, true) => (
from_nbits == 64,
ArchSuffix::_32,
cast_unsigned_to_signed,
if from_nbits == 64 {ArchSuffix::_64} else {ArchSuffix::_32}
),
};
if span_truncation {
span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span,
&format!("casting {} to {} may truncate the value{}",
cast_from, cast_to,
match suffix_truncation {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "" }));
}
if span_wrap {
span_lint(cx, CAST_POSSIBLE_WRAP, expr.span,
&format!("casting {} to {} may wrap around the value{}",
cast_from, cast_to,
match suffix_wrap {
ArchSuffix::_32 => arch_32_suffix,
ArchSuffix::_64 => arch_64_suffix,
ArchSuffix::None => "" }));
}
}
impl LintPass for CastPass {
fn get_lints(&self) -> LintArray {
lint_array!(CAST_PRECISION_LOSS,
CAST_SIGN_LOSS,
CAST_POSSIBLE_TRUNCATION,
CAST_POSSIBLE_WRAP)
}
fn check_expr(&mut self, cx: &Context, expr: &Expr) {
if let ExprCast(ref ex, _) = expr.node {
let (cast_from, cast_to) = (cx.tcx.expr_ty(&*ex), cx.tcx.expr_ty(expr));
if cast_from.is_numeric() && cast_to.is_numeric() && !in_external_macro(cx, expr.span) {
match (cast_from.is_integral(), cast_to.is_integral()) {
(true, false) => {
let from_nbits = int_ty_to_nbits(cast_from);
let to_nbits = if let ty::TyFloat(ast::TyF32) = cast_to.sty {32} else {64};
if is_isize_or_usize(cast_from) || from_nbits >= to_nbits {
span_precision_loss_lint(cx, expr, cast_from, to_nbits == 64);
}
},
(false, true) => {
span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span,
&format!("casting {} to {} may truncate the value", cast_from, cast_to));
if !cast_to.is_signed() {
span_lint(cx, CAST_SIGN_LOSS, expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
},
(true, true) => {
if cast_from.is_signed() && !cast_to.is_signed() {
span_lint(cx, CAST_SIGN_LOSS, expr.span,
&format!("casting {} to {} may lose the sign of the value", cast_from, cast_to));
}
check_truncation_and_wrapping(cx, expr, cast_from, cast_to);
}
(false, false) => {
if let (&ty::TyFloat(ast::TyF64),
&ty::TyFloat(ast::TyF32)) = (&cast_from.sty, &cast_to.sty) {
span_lint(cx, CAST_POSSIBLE_TRUNCATION, expr.span, "casting f64 to f32 may truncate the value");
}
}
}
}
}
}
}
declare_lint!(pub TYPE_COMPLEXITY, Warn,
"usage of very complex types; recommends factoring out parts into `type` definitions");
#[allow(missing_copy_implementations)]
pub struct TypeComplexityPass;
impl LintPass for TypeComplexityPass {
fn get_lints(&self) -> LintArray {
lint_array!(TYPE_COMPLEXITY)
}
fn check_fn(&mut self, cx: &Context, _: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
check_fndecl(cx, decl);
}
fn check_struct_field(&mut self, cx: &Context, field: &StructField) {
check_type(cx, &*field.node.ty);
}
fn check_variant(&mut self, cx: &Context, var: &Variant, _: &Generics) {
// StructVariant is covered by check_struct_field
if let TupleVariantKind(ref args) = var.node.kind {
for arg in args {
check_type(cx, &*arg.ty);
}
}
}
fn check_item(&mut self, cx: &Context, item: &Item) {
match item.node {
ItemStatic(ref ty, _, _) |
ItemConst(ref ty, _) => check_type(cx, ty),
// functions, enums, structs, impls and traits are covered
_ => ()
}
}
fn check_trait_item(&mut self, cx: &Context, item: &TraitItem) {
match item.node {
ConstTraitItem(ref ty, _) |
TypeTraitItem(_, Some(ref ty)) => check_type(cx, ty),
MethodTraitItem(MethodSig { ref decl, .. }, None) => check_fndecl(cx, decl),
// methods with default impl are covered by check_fn
_ => ()
}
}
fn check_impl_item(&mut self, cx: &Context, item: &ImplItem) {
match item.node {
ConstImplItem(ref ty, _) |
TypeImplItem(ref ty) => check_type(cx, ty),
// methods are covered by check_fn
_ => ()
}
}
fn check_local(&mut self, cx: &Context, local: &Local) {
if let Some(ref ty) = local.ty {
check_type(cx, ty);
}
}
}
fn check_fndecl(cx: &Context, decl: &FnDecl) {
for arg in &decl.inputs {
check_type(cx, &*arg.ty);
}
if let Return(ref ty) = decl.output {
check_type(cx, ty);
}
}
fn check_type(cx: &Context, ty: &ast::Ty) {
if in_external_macro(cx, ty.span) { return; }
let score = {
let mut visitor = TypeComplexityVisitor { score: 0, nest: 1 };
visitor.visit_ty(ty);
visitor.score
};
// println!("{:?} --> {}", ty, score);
if score > 250 {
span_lint(cx, TYPE_COMPLEXITY, ty.span, &format!(
"very complex type used. Consider factoring parts into `type` definitions"));
}
}
/// Walks a type and assigns a complexity score to it.
struct TypeComplexityVisitor {
/// total complexity score of the type
score: u32,
/// current nesting level
nest: u32,
}
impl<'v> Visitor<'v> for TypeComplexityVisitor {
fn visit_ty(&mut self, ty: &'v ast::Ty) {
let (add_score, sub_nest) = match ty.node {
// _, &x and *x have only small overhead; don't mess with nesting level
TyInfer |
TyPtr(..) |
TyRptr(..) => (1, 0),
// the "normal" components of a type: named types, arrays/tuples
TyPath(..) |
TyVec(..) |
TyTup(..) |
TyFixedLengthVec(..) => (10 * self.nest, 1),
// "Sum" of trait bounds
TyObjectSum(..) => (20 * self.nest, 0),
// function types and "for<...>" bring a lot of overhead
TyBareFn(..) |
TyPolyTraitRef(..) => (50 * self.nest, 1),
_ => (0, 0)
};
self.score += add_score;
self.nest += sub_nest;
walk_ty(self, ty);
self.nest -= sub_nest;
}
}