translations: rename warn_ to warning
## Description
This MR renames the the macro `warn_` to `warning`.
To give a little bit of context, as [explained](https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20diag.20translation/near/295074146) by ```````@davidtwco``````` in the Zulip channel, `warn_` was named like that because the keyword `warn` is a built-in attribute and at the time this macro was created the word `warning` was also
taken.
However, it is no longer the case and we can rename `warn_` to `warning`.
Simplify the arguments to macros generated by the `rustc_queries` proc macro
Very small cleanup. Based on https://github.com/rust-lang/rust/pull/100436 which modifies some of the same code.
r? `@cjgillot`
add `depth_limit` in `QueryVTable` to avoid entering a new tcx in `layout_of`
Fixes#49735
Updates #48685
The `layout_of` query needs to check whether it overflows the depth limit, and the current implementation needs to create a new `ImplicitCtxt` inside `layout_of`. However, `start_query` will already create a new `ImplicitCtxt`, so we can check the depth limit in `start_query`.
We can tell whether we need to check the depth limit simply by whether the return value of `to_debug_str` of the query is `layout_of`. But I think adding the `depth_limit` field in `QueryVTable` may be more elegant and more scalable.
The macro warn_ was named like that because it the
keyword warn is a built-in attribute and at the time
this macro was created the word 'warning' was also
taken.
However it is no longer the case and we can rename
warn_ to warning.
- Disallow multiple macros callbacks in the same invocation. In practice, this was never used.
- Remove the `[]` brackets around the macro name
- Require an `ident`, not an arbitrary `tt`
fluent: mandate slug names to be prefixed by crate name
This is currently only convention, but not actively checked for.
Additionally, improve error messages to highlight the path of the offending fluent file rather than the identifier preceding it.
This will conflict with #100671, so I'll leave it as draft until that's merged.
Example error before:
error: name `generic_does_not_live_long_enough` does not start with the crate name
--> compiler/rustc_error_messages/src/lib.rs:33:17
|
33 | borrowck => "../locales/en-US/borrowck.ftl",
| ^^^^^^^^
|
= help: prepend `borrowck_` to the slug name: `borrowck_generic_does_not_live_long_enough`
after:
error: name `generic_does_not_live_long_enough` does not start with the crate name
--> compiler/rustc_error_messages/src/lib.rs:33:17
|
33 | borrowck => "../locales/en-US/borrowck.ftl",
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: prepend `borrowck_` to the slug name: `borrowck_generic_does_not_live_long_enough`
Deriving SessionDiagnostic on a type no longer forces that diagnostic to
be one of warning, error, or fatal. The level is instead decided when
the struct is passed to the respective Handler::emit_*() method.
For the most part, the macro actually worked with _ slugs, but the prefix_something -> prefix::something
conversion was not implemented.
We don't want to accept - slugs for consistency reasons.
We thus error if a name is found with - inside.
This ensures a consistent style.
Both diagnostic and subdiagnostic derives were missing the ability to
add warnings to diagnostics - this is made more difficult by the `warn`
attribute already existing, so this name being unavailable for the
derives to use. `#[warn_]` is used instead, which requires
special-casing so that `{span_,}warn` is called instead of
`{span_,}warn_`.
Signed-off-by: David Wood <david.wood@huawei.com>
Add support for `MultiSpan` with any of the attributes that work on a
`Span` - requires that diagnostic logic generated for these attributes
are emitted in the by-move block rather than the by-ref block that they
would normally have been generated in.
Signed-off-by: David Wood <david.wood@huawei.com>
macros: `LintDiagnostic` derive
- Move `LintDiagnosticBuilder` into `rustc_errors` so that a diagnostic derive can refer to it.
- Introduce a `DecorateLint` trait, which is equivalent to `SessionDiagnostic` or `AddToDiagnostic` but for lints. Necessary without making more changes to the lint infrastructure as `DecorateLint` takes a `LintDiagnosticBuilder` and re-uses all of the existing logic for determining what type of diagnostic a lint should be emitted as (e.g. error/warning).
- Various refactorings of the diagnostic derive machinery (extracting `build_field_mapping` helper and moving `sess` field out of the `DiagnosticDeriveBuilder`).
- Introduce a `LintDiagnostic` derive macro that works almost exactly like the `SessionDiagnostic` derive macro except that it derives a `DecorateLint` implementation instead. A new derive is necessary for this because `SessionDiagnostic` is intended for when the generated code creates the diagnostic. `AddToDiagnostic` could have been used but it would have required more changes to the lint machinery.
~~At time of opening this pull request, ignore all of the commits from #98624, it's just the last few commits that are new.~~
r? `@oli-obk`
`SessionDiagnostic` isn't suitable for use on lints as whether or not it
creates an error or a warning is decided at compile-time by the macro,
whereas lints decide this at runtime based on the location of the lint
being reported (as it will depend on the user's `allow`/`deny`
attributes, etc). Re-using most of the machinery for
`SessionDiagnostic`, this macro introduces a `LintDiagnostic` derive
which implements a `DecorateLint` trait, taking a
`LintDiagnosticBuilder` and adding to the lint according to the
diagnostic struct.
`sess` field of `SessionDiagnosticDeriveBuilder` is never actually used
in the builder's member functions, so it doesn't need to be a field.
Signed-off-by: David Wood <david.wood@huawei.com>
Move the logic for building a field mapping (which is used by the
building of format strings in `suggestion` annotations) into a helper
function.
Signed-off-by: David Wood <david.wood@huawei.com>
As in the diagnostic derive, using typed identifiers in the
subdiagnostic derive improves the diagnostics of using the subdiagnostic
derive as Fluent messages will be confirmed to exist at compile-time.
Signed-off-by: David Wood <david.wood@huawei.com>
Using typed identifiers instead of strings with the Fluent identifier
enables the diagnostic derive to benefit from the compile-time
validation that comes with typed identifiers - use of a non-existent
Fluent identifier will not compile.
Signed-off-by: David Wood <david.wood@huawei.com>
This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
There are two impls of the `Encoder` trait: `opaque::Encoder` and
`opaque::FileEncoder`. The former encodes into memory and is infallible, the
latter writes to file and is fallible.
Currently, standard `Result`/`?`/`unwrap` error handling is used, but this is a
bit verbose and has non-trivial cost, which is annoying given how rare failures
are (especially in the infallible `opaque::Encoder` case).
This commit changes how `Encoder` fallibility is handled. All the `emit_*`
methods are now infallible. `opaque::Encoder` requires no great changes for
this. `opaque::FileEncoder` now implements a delayed error handling strategy.
If a failure occurs, it records this via the `res` field, and all subsequent
encoding operations are skipped if `res` indicates an error has occurred. Once
encoding is complete, the new `finish` method is called, which returns a
`Result`. In other words, there is now a single `Result`-producing method
instead of many of them.
This has very little effect on how any file errors are reported if
`opaque::FileEncoder` has any failures.
Much of this commit is boring mechanical changes, removing `Result` return
values and `?` or `unwrap` from expressions. The more interesting parts are as
follows.
- serialize.rs: The `Encoder` trait gains an `Ok` associated type. The
`into_inner` method is changed into `finish`, which returns
`Result<Vec<u8>, !>`.
- opaque.rs: The `FileEncoder` adopts the delayed error handling
strategy. Its `Ok` type is a `usize`, returning the number of bytes
written, replacing previous uses of `FileEncoder::position`.
- Various methods that take an encoder now consume it, rather than being
passed a mutable reference, e.g. `serialize_query_result_cache`.
To render the message of a Fluent attribute, the identifier of the
Fluent message must be known. `DiagnosticMessage::FluentIdentifier`
contains both the message's identifier and optionally the identifier of
an attribute. Generated constants for each attribute would therefore
need to be named uniquely (amongst all error messages) or be able to
refer to only the attribute identifier which will be combined with a
message identifier later. In this commit, the latter strategy is
implemented as part of the `Diagnostic` type's functions for adding
subdiagnostics of various kinds.
Signed-off-by: David Wood <david.wood@huawei.com>