Bump RLS to latest master on rust-lang/rls
Of primary interest, this merges
rust-lang/rls@ece09b88c0 into rust-lang/rust,
which brings in the changes that fix RLS tests broken by #97853. #97853 already
introduced that commit's changes (under
rust-lang/rls@27f4044df0) but without putting those changes on
rust-lang/rls as a branch, so we ended up with an orphan commit that caused
trouble when updating submodules in rust-lang/rust.
This commit, once merged into rust-lang/rust, should continue to let RLS tests
to pass on rust-lang/rust's side and move us back into a healthy state where tip
of the submodule points to a valid master commit in the rust-lang/rls
repository.
cc https://github.com/rust-lang/rust/issues/98451, but not marking as fixed as I believe we need to add verification to prevent future oversights.
Fully remove submodule handling from bootstrap.py
These submodules were previously updated in python because Cargo gives a hard error if toml files
are missing from the workspace:
```
error: failed to load manifest for workspace member `/home/jnelson/rust-lang/rust/src/tools/rls`
Caused by:
failed to read `/home/jnelson/rust-lang/rust/src/tools/rls/Cargo.toml`
Caused by:
No such file or directory (os error 2)
failed to run: /home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage0/bin/cargo build --manifest-path /home/jnelson/rust-lang/rust/src/bootstrap/Cargo.toml
```
However, bootstrap doesn't actually need to be part of the workspace.
Remove it so we can move submodule handling fully to Rust, avoiding duplicate code between Rust and Python.
Note that this does break `cargo run`; it has to be `cd src/bootstrap && cargo run` now.
Given that we're planning to make the main entrypoint a shell script (or rust binary),
I think this is a good tradeoff for reduced complexity in bootstrap.py.
To get this working, I also had to remove support for vendoring when using the git sources, because `cargo vendor` requires all submodules to be checked out. I think this is ok; people who care about this are likely already using the pre-vendored `rustc-src` tarball.
Fixes https://github.com/rust-lang/rust/issues/90764. Helps with #94829
Of primary interest, this merges
rust-lang/rls@ece09b88c0 into rust-lang/rust,
which brings in the changes that fix RLS tests broken by #97853. #97853 already
introduced that commit's changes (under
27f4044df03d15c7c38a483c3e4635cf4f51807d) but without putting those changes on
rust-lang/rls as a branch, so we ended up with an orphan commit that caused
trouble when updating submodules in rust-lang/rust.
This commit, once merged into rust-lang/rust, should continue to let RLS tests
to pass on rust-lang/rust's side and move us back into a healthy state where tip
of the submodule points to a valid master commit in the rust-lang/rls
repository.
Migrate two diagnostics from the `rustc_builtin_macros` crate
Migrate two diagnostics to use the struct derive and be translatable.
r? ```@davidtwco```
These submodules were previously updated in python because Cargo gives a hard error if toml files
are missing from the workspace:
```
error: failed to load manifest for workspace member `/home/jnelson/rust-lang/rust/src/tools/rls`
Caused by:
failed to read `/home/jnelson/rust-lang/rust/src/tools/rls/Cargo.toml`
Caused by:
No such file or directory (os error 2)
failed to run: /home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage0/bin/cargo build --manifest-path /home/jnelson/rust-lang/rust/src/bootstrap/Cargo.toml
```
However, bootstrap doesn't actually need to be part of the workspace.
Remove it so we can move submodule handling fully to Rust, avoiding duplicate code between Rust and Python.
Note that this does break `cargo run`; it has to be `cd src/bootstrap && cargo run` now.
Given that we're planning to make the main entrypoint a shell script (or rust binary),
I think this is a good tradeoff for reduced complexity in bootstrap.py.
Make "Assemble stage1 compiler" orders of magnitude faster (take 2)
This used to take upwards of 5 seconds for me locally. I found that the culprit was copying the downloaded LLVM shared object:
```
[22:28:03] Install "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/ci-llvm/lib/libLLVM-14-rust-1.62.0-nightly.so" to "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage1/lib/rustlib/x86_64-unknown-linux-gnu/lib/libLLVM-14-rust-1.62.0-nightly.so"
[22:28:09] c Sysroot { compiler: Compiler { stage: 1, host: x86_64-unknown-linux-gnu(x86_64-unknown-linux-gnu) } }
```
It turned out that `install()` used full copies unconditionally. Change it to try using a hard-link before falling back to copying.
- Panic if we generate a symbolic link in a tarball
- Change install to use copy internally, like in my previous PR
- Change copy to dereference symbolic links, which avoids the previous regression in #96803.
I also took the liberty of fixing `x dist llvm-tools` to work even if you don't call `x build` previously.
add comments in `store_dead_field_or_variant`
support multiple log level
add a item ident label
fix ui tests
fix a ui test
fix a rustdoc ui test
use let chain
refactor: remove `store_dead_field_or_variant`
fix a tiny bug
4 commits in 4d92f07f34ba7fb7d7f207564942508f46c225d3..8d42b0e8794ce3787c9f7d6d88b02ae80ebe8d19
2022-06-10 01:11:04 +0000 to 2022-06-17 16:46:26 +0000
- Use specific terminology for sparse HTTP-based registry (rust-lang/cargo#10764)
- chore: Upgrade to clap 3.2 (rust-lang/cargo#10753)
- Improve testing framework for http registries (rust-lang/cargo#10738)
- doc: Improve example of using the links field (rust-lang/cargo#10728)
This adds the typeid and `vcall_visibility` metadata to vtables when the
-Cvirtual-function-elimination flag is set.
The typeid is generated in the same way as for the
`llvm.type.checked.load` intrinsic from the trait_ref.
The offset that is added to the typeid is always 0. This is because LLVM
assumes that vtables are constructed according to the definition in the
Itanium ABI. This includes an "address point" of the vtable. In C++ this
is the offset in the vtable where information for RTTI is placed. Since
there is no RTTI information in Rust's vtables, this "address point" is
always 0. This "address point" in combination with the offset passed to
the `llvm.type.checked.load` intrinsic determines the final function
that should be loaded from the vtable in the
`WholeProgramDevirtualization` pass in LLVM. That's why the
`llvm.type.checked.load` intrinsics are generated with the typeid of the
trait, rather than with that of the function that is called. This
matches what `clang` does for C++.
The vcall_visibility metadata depends on three factors:
1. LTO level: Currently this is always fat LTO, because LLVM only
supports this optimization with fat LTO.
2. Visibility of the trait: If the trait is publicly visible, VFE
can only act on its vtables after linking.
3. Number of CGUs: if there is more than one CGU, also vtables with
restricted visibility could be seen outside of the CGU, so VFE can
only act on them after linking.
To reflect this, there are three visibility levels: Public, LinkageUnit,
and TranslationUnit.
Update minifier version to 0.2.1
This change and these changes come from an idea of `@camelid:` instead of creating a string, we just `write` the type into the file directly.
I don't think it'll have a big impact on perf but it's still a potential small improvement.
r? `@notriddle`
Update cargo
7 commits in 38472bc19f2f76e245eba54a6e97ee6821b3c1db..85e457e158db216a2938d51bc3b617a5a7fe6015
2022-05-31 02:03:24 +0000 to 2022-06-07 21:57:52 +0000
- Make -Z http-registry use index.crates.io when accessing crates-io (rust-lang/cargo#10725)
- Respect submodule update=none strategy in .gitmodules (rust-lang/cargo#10717)
- Expose rust-version through env var (rust-lang/cargo#10713)
- add validation for string "true"/"false" in lto profile (rust-lang/cargo#10676)
- Enhance documentation of testing (rust-lang/cargo#10726)
- Clear disk space on CI. (rust-lang/cargo#10724)
- Enforce to use tar v0.4.38 (rust-lang/cargo#10720)
Add build metrics to rustbuild
This PR adds a new module of rustbuild, `ci_profiler`, whose job is to gather as much information as possible about the CI build as possible and store it in a JSON file uploaded to `ci-artifacts`. Right now for each step it collects:
* Type name and debug representation of the `Step` object.
* Duration of the step (excluding child steps).
* Systemwide CPU stats for the duration of the step (both single core and all cores).
* Which child steps were executed.
This is capable of replacing both the scripts to collect CPU stats and the `[TIMING]` lines in build logs (not yet removed, until we port our tooling to use the CI profiler). The format is also extensible to be able in the future to collect more information.
r? `@Mark-Simulacrum`