In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
There are a few reasons that this is a desirable move to take:
1. Proof of concept that a third party event loop is possible
2. Clear separation of responsibility between rt::io and the uv-backend
3. Enforce in the future that the event loop is "pluggable" and replacable
Here's a quick summary of the points of this pull request which make this
possible:
* Two new lang items were introduced: event_loop, and event_loop_factory.
The idea of a "factory" is to define a function which can be called with no
arguments and will return the new event loop as a trait object. This factory
is emitted to the crate map when building an executable. The factory doesn't
have to exist, and when it doesn't then an empty slot is in the crate map and
a basic event loop with no I/O support is provided to the runtime.
* When building an executable, then the rustuv crate will be linked by default
(providing a default implementation of the event loop) via a similar method to
injecting a dependency on libstd. This is currently the only location where
the rustuv crate is ever linked.
* There is a new #[no_uv] attribute (implied by #[no_std]) which denies
implicitly linking to rustuv by default
Closes#5019
Namely, switched in many places to using GNU make provided functions
for directory listing and text processing, rather than spawning a
shell process to do that work.
In the process of the revision, learned about Target-specific
variables, which were very applicable to INSTALL_LIB (which, on a
per-recipe basis, was always receiving the same actual arguments for
its first two formal parameters in every invocation).
http://www.gnu.org/software/make/manual/html_node/Target_002dspecific.html
(We might be able to make use of those in future refactorings.)
----
Also adds a cleanup pass to get-snapshot.py as well, since the same
problem arises when we unpack libraries from the snapshot archive into
a build directory with a prior snapshot's artifacts. (I put this step
into the python script rather than the makefile because I wanted to
delay the cleanup pass until after we have at least successfully
downloaded the tarball. That way, if the download fails, you should
not destroy the previous unarchived snapshot libraries and build
products.)
----
Also reverted whitespace changes to minimize diff.
I plan to put them back in in a dedicated commit elsewhere.
When building Rust libraries (e.g. librustc, libstd, etc), checks for
and verbosely removes previous build products before invoking rustc.
(Also, when Make variable VERBOSE is defined, it will list all of the
libraries matching the object library's glob after the rustc
invocation has completed.)
When installing Rust libraries, checks for previous libraries in
target install directory, but does not remove them.
The thinking behind these two different modes of operation is that the
installation target, unlike the build tree, is not under the control
of this infrastructure and it is not up to this Makefile to decide if
the previous libraries should be removed.
rather than the snapshots.
make sure to get all of the files.
update to add nmatsakis' requested feature of pointing to a
different rustc install root.
usage: --enable-local-rust to enable
--local-rust-root="/path/to/rustc/" to change the path, which defaults to
"/usr/local/"
Tested on OS X and Linux, likely broken on windows.
This splits mk/stageN.mk into host.mk and target.mk and makes
the build rules somewhat simpler - there's no more building from stageN
into stageN+1; instead we always build from stageN(host) to
stageN(target) then promote from stageN(target) to stageN+1(host).
Add a big honkin explaination right at the top of Makefile.in
Each stage is organized more according to Unix standards and to
accommodate multiple target architectures.
stageN/
bin - rustc lives here
lib - libraries that rustc needs
lib/rustc/$(target_triple/ - target libraries
This essentially starts the bootstrapping one step earlier by building
the stdlib from source using the stage0 compiler and then using that
stdlib to build the stage1 compiler. (Instead of starting by building
the stage1 compiler and then building a stdlib with it).
This means we should now be able to add features to the stdlib and use
them in the compiler without having to do a snapshot. (On the flip
side, this means that we now need to do a snapshot if we want to use a
new language feature in the stdlib, but that doesn't really seem too
burdensome (we already need to snapshot if we want to use a new
language feature in the compiler)).