Thought of doing this by having a struct and an enum with Default and Alt cases, but not sure if we wanted to have the text in code instead of having “demangling()” and “demangling-alt()” in the ftl file.
Don’t like the current way of having structs representing the same-ish and using long names to distinguish their expectations, instead of putting this in an enum and handling the different cases inside the type.
I am fine with whichever option the team prefers; also understand having them as separate structs keeps it simple.
Add fine-grained LLVM CFI support to the Rust compiler
This PR improves the LLVM Control Flow Integrity (CFI) support in the Rust compiler by providing forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types.
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue https://github.com/rust-lang/rust/issues/89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto).
Thank you again, `@eddyb,` `@nagisa,` `@pcc,` and `@tmiasko` for all the help!
This commit improves the LLVM Control Flow Integrity (CFI) support in
the Rust compiler by providing forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their return and parameter types.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
This function computes a Itanium-like typeid for a trait_ref. This is
required for the VFE optimization in LLVM. It is used to map
`llvm.type.checked.load` invocations, that is loading the function from
a vtable, to the vtables this function could be from.
It is important to note that `typeid`s are not unique. So multiple
vtables of the same trait can share `typeid`s.
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
Refactor HIR item-like traversal (part 1)
Issue #95004
- Create hir_crate_items query which traverses tcx.hir_crate(()).owners to return a hir::ModuleItems
- use tcx.hir_crate_items in tcx.hir().items() to return an iterator of hir::ItemId
- use tcx.hir_crate_items to introduce a tcx.hir().par_items(impl Fn(hir::ItemId)) to traverse all items in parallel;
Signed-off-by: Miguel Guarniz <mi9uel9@gmail.com>
cc `@cjgillot`
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Fix inconsistent symbol mangling of integers constants with -Zverbose
The `PrettyPrinter` changes formatting of array size and integer
constants based on `-Zverbose`, so its implementation cannot be used in
legacy symbol mangling.
Example symbol demangling before changes:
```console
$ cat a.rs
pub struct A<T>(T);
impl A<[u8; 128]> { pub fn f() {} }
$ rustc --crate-type=lib a.rs -Zverbose=n && nm -C ./liba.rlib
00000000 T a::A<[u8; 128]>::f
$ rustc --crate-type=lib a.rs -Zverbose=y && nm -C ./liba.rlib
00000000 T a::A<[u8; Const { ty. usize, val. Value(Scalar(0x0000000000000080)) }]>::f
```
The `PrettyPrinter` changes formatting of array size and integer
constants based on `-Zverbose`, so its implementation cannot be used in
legacy symbol mangling.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Store a `Symbol` instead of an `Ident` in `AssocItem`
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`