Auto merge of #86417 - m-ou-se:rollup-vo2y1rz, r=m-ou-se

Rollup of 6 pull requests

Successful merges:

 - #85925 (Linear interpolation)
 - #86202 (Specialize `io::Bytes::size_hint` for more types)
 - #86357 (Rely on libc for correct integer types in os/unix/net/ancillary.rs.)
 - #86388 (Make `s` pre-interned)
 - #86401 (Fix ICE when using `#[doc(keyword = "...")]` on non-items)
 - #86405 (Add incr-comp note for 1.53.0 relnotes)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2021-06-17 23:30:08 +00:00
commit a6bc43ea84
16 changed files with 320 additions and 112 deletions

View file

@ -113,6 +113,7 @@ Compatibility Notes
In particular, this was known to be a problem in the `lexical-core` crate,
but they have published fixes for semantic versions 0.4 through 0.7. To
update this dependency alone, use `cargo update -p lexical-core`.
- Incremental compilation remains off by default, unless one uses the `RUSTC_FORCE_INCREMENTAL=1` environment variable added in 1.52.1.
Internal Only
-------------

View file

@ -124,12 +124,7 @@ pub fn expand_deriving_rustc_encodable(
explicit_self: borrowed_explicit_self(),
args: vec![(
Ptr(Box::new(Literal(Path::new_local(typaram))), Borrowed(None, Mutability::Mut)),
// FIXME: we could use `sym::s` here, but making `s` a static
// symbol changes the symbol index ordering in a way that makes
// ui/lint/rfc-2457-non-ascii-idents/lint-confusable-idents.rs
// fail. The linting code should be fixed so that its output
// does not depend on the symbol index ordering.
Symbol::intern("s"),
sym::s,
)],
ret_ty: Literal(Path::new_(
pathvec_std!(result::Result),

View file

@ -525,8 +525,11 @@ impl CheckAttrVisitor<'tcx> {
self.doc_attr_str_error(meta, "keyword");
return false;
}
match self.tcx.hir().expect_item(hir_id).kind {
ItemKind::Mod(ref module) => {
match self.tcx.hir().find(hir_id).and_then(|node| match node {
hir::Node::Item(item) => Some(&item.kind),
_ => None,
}) {
Some(ItemKind::Mod(ref module)) => {
if !module.item_ids.is_empty() {
self.tcx
.sess

View file

@ -1062,6 +1062,7 @@ symbols! {
rustdoc,
rustfmt,
rvalue_static_promotion,
s,
sanitize,
sanitizer_runtime,
saturating_add,

View file

@ -876,4 +876,40 @@ impl f32 {
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f32, end: f32) -> f32 {
// consistent
if start == end {
start
// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
}

View file

@ -757,3 +757,66 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}
#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f32::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f32::lerp(1.0, 2.0, 4.0), 4.0);
// boundary values
assert_eq!(f32::lerp(0.0, f32::MIN, f32::MAX), f32::MIN);
assert_eq!(f32::lerp(1.0, f32::MIN, f32::MAX), f32::MAX);
}
#[test]
fn test_lerp_consistent() {
assert_eq!(f32::lerp(f32::MAX, f32::MIN, f32::MIN), f32::MIN);
assert_eq!(f32::lerp(f32::MIN, f32::MAX, f32::MAX), f32::MAX);
// as long as t is finite, a/b can be infinite
assert_eq!(f32::lerp(f32::MAX, f32::NEG_INFINITY, f32::NEG_INFINITY), f32::NEG_INFINITY);
assert_eq!(f32::lerp(f32::MIN, f32::INFINITY, f32::INFINITY), f32::INFINITY);
}
#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f32::lerp(f32::INFINITY, f32::MIN, f32::MAX).is_nan());
assert!(!f32::lerp(f32::NEG_INFINITY, f32::MIN, f32::MAX).is_nan());
}
#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f32::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f32::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f32::lerp(0.75, 1.0, 2.0), 1.75);
}
#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f32::lerp(-f32::EPSILON, f32::MIN, f32::MAX);
let zero = f32::lerp(0.0, f32::MIN, f32::MAX);
let above_zero = f32::lerp(f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);
// near 0.5
let below_half = f32::lerp(0.5 - f32::EPSILON, f32::MIN, f32::MAX);
let half = f32::lerp(0.5, f32::MIN, f32::MAX);
let above_half = f32::lerp(0.5 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_half <= half);
assert!(half <= above_half);
assert!(below_half <= above_half);
// near 1
let below_one = f32::lerp(1.0 - f32::EPSILON, f32::MIN, f32::MAX);
let one = f32::lerp(1.0, f32::MIN, f32::MAX);
let above_one = f32::lerp(1.0 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}

View file

@ -879,6 +879,42 @@ impl f64 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f64, end: f64) -> f64 {
// consistent
if start == end {
start
// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
// Solaris/Illumos requires a wrapper around log, log2, and log10 functions
// because of their non-standard behavior (e.g., log(-n) returns -Inf instead
// of expected NaN).

View file

@ -753,3 +753,58 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}
#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f64::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f64::lerp(1.0, 2.0, 4.0), 4.0);
// boundary values
assert_eq!(f64::lerp(0.0, f64::MIN, f64::MAX), f64::MIN);
assert_eq!(f64::lerp(1.0, f64::MIN, f64::MAX), f64::MAX);
}
#[test]
fn test_lerp_consistent() {
assert_eq!(f64::lerp(f64::MAX, f64::MIN, f64::MIN), f64::MIN);
assert_eq!(f64::lerp(f64::MIN, f64::MAX, f64::MAX), f64::MAX);
// as long as t is finite, a/b can be infinite
assert_eq!(f64::lerp(f64::MAX, f64::NEG_INFINITY, f64::NEG_INFINITY), f64::NEG_INFINITY);
assert_eq!(f64::lerp(f64::MIN, f64::INFINITY, f64::INFINITY), f64::INFINITY);
}
#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f64::lerp(f64::INFINITY, f64::MIN, f64::MAX).is_nan());
assert!(!f64::lerp(f64::NEG_INFINITY, f64::MIN, f64::MAX).is_nan());
}
#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f64::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f64::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f64::lerp(0.75, 1.0, 2.0), 1.75);
}
#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f64::lerp(-f64::EPSILON, f64::MIN, f64::MAX);
let zero = f64::lerp(0.0, f64::MIN, f64::MAX);
let above_zero = f64::lerp(f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);
// near 1
let below_one = f64::lerp(1.0 - f64::EPSILON, f64::MIN, f64::MAX);
let one = f64::lerp(1.0, f64::MIN, f64::MAX);
let above_one = f64::lerp(1.0 + f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}

View file

@ -438,7 +438,13 @@ impl<R: Seek> Seek for BufReader<R> {
}
impl<T> SizeHint for BufReader<T> {
#[inline]
fn lower_bound(&self) -> usize {
self.buffer().len()
SizeHint::lower_bound(self.get_ref()) + self.buffer().len()
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(self.get_ref()).and_then(|up| self.buffer().len().checked_add(up))
}
}

View file

@ -252,6 +252,7 @@
mod tests;
use crate::cmp;
use crate::convert::TryInto;
use crate::fmt;
use crate::mem::replace;
use crate::ops::{Deref, DerefMut};
@ -2342,13 +2343,15 @@ impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
}
impl<T, U> SizeHint for Chain<T, U> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&self.first) + SizeHint::lower_bound(&self.second)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
(Some(first), Some(second)) => Some(first + second),
(Some(first), Some(second)) => first.checked_add(second),
_ => None,
}
}
@ -2553,6 +2556,21 @@ impl<T: BufRead> BufRead for Take<T> {
}
}
impl<T> SizeHint for Take<T> {
#[inline]
fn lower_bound(&self) -> usize {
cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
match SizeHint::upper_bound(&self.inner) {
Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
None => self.limit.try_into().ok(),
}
}
}
/// An iterator over `u8` values of a reader.
///
/// This struct is generally created by calling [`bytes`] on a reader.
@ -2597,15 +2615,53 @@ trait SizeHint {
}
impl<T> SizeHint for T {
#[inline]
default fn lower_bound(&self) -> usize {
0
}
#[inline]
default fn upper_bound(&self) -> Option<usize> {
None
}
}
impl<T> SizeHint for &mut T {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(*self)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(*self)
}
}
impl<T> SizeHint for Box<T> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&**self)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(&**self)
}
}
impl SizeHint for &[u8] {
#[inline]
fn lower_bound(&self) -> usize {
self.len()
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
Some(self.len())
}
}
/// An iterator over the contents of an instance of `BufRead` split on a
/// particular byte.
///

View file

@ -224,6 +224,24 @@ fn empty_size_hint() {
assert_eq!(size_hint, (0, Some(0)));
}
#[test]
fn slice_size_hint() {
let size_hint = (&[1, 2, 3]).bytes().size_hint();
assert_eq!(size_hint, (3, Some(3)));
}
#[test]
fn take_size_hint() {
let size_hint = (&[1, 2, 3]).take(2).bytes().size_hint();
assert_eq!(size_hint, (2, Some(2)));
let size_hint = (&[1, 2, 3]).take(4).bytes().size_hint();
assert_eq!(size_hint, (3, Some(3)));
let size_hint = io::repeat(0).take(3).bytes().size_hint();
assert_eq!(size_hint, (3, Some(3)));
}
#[test]
fn chain_empty_size_hint() {
let chain = io::empty().chain(io::empty());
@ -242,7 +260,7 @@ fn chain_size_hint() {
let chain = buf_reader_1.chain(buf_reader_2);
let size_hint = chain.bytes().size_hint();
assert_eq!(size_hint, (testdata.len(), None));
assert_eq!(size_hint, (testdata.len(), Some(testdata.len())));
}
#[test]

View file

@ -83,6 +83,7 @@ impl fmt::Debug for Empty {
}
impl SizeHint for Empty {
#[inline]
fn upper_bound(&self) -> Option<usize> {
Some(0)
}
@ -147,6 +148,18 @@ impl Read for Repeat {
}
}
impl SizeHint for Repeat {
#[inline]
fn lower_bound(&self) -> usize {
usize::MAX
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
None
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Repeat {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

View file

@ -268,6 +268,7 @@
#![feature(exhaustive_patterns)]
#![feature(extend_one)]
#![cfg_attr(bootstrap, feature(extended_key_value_attributes))]
#![feature(float_interpolation)]
#![feature(fn_traits)]
#![feature(format_args_nl)]
#![feature(gen_future)]

View file

@ -32,23 +32,8 @@ pub(super) fn recv_vectored_with_ancillary_from(
msg.msg_name = &mut msg_name as *mut _ as *mut _;
msg.msg_namelen = size_of::<libc::sockaddr_un>() as libc::socklen_t;
msg.msg_iov = bufs.as_mut_ptr().cast();
cfg_if::cfg_if! {
if #[cfg(any(target_os = "android", all(target_os = "linux", target_env = "gnu")))] {
msg.msg_iovlen = bufs.len() as libc::size_t;
msg.msg_controllen = ancillary.buffer.len() as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
msg.msg_iovlen = bufs.len() as libc::c_int;
msg.msg_controllen = ancillary.buffer.len() as libc::socklen_t;
}
}
msg.msg_iovlen = bufs.len() as _;
msg.msg_controllen = ancillary.buffer.len() as _;
// macos requires that the control pointer is null when the len is 0.
if msg.msg_controllen > 0 {
msg.msg_control = ancillary.buffer.as_mut_ptr().cast();
@ -80,23 +65,8 @@ pub(super) fn send_vectored_with_ancillary_to(
msg.msg_name = &mut msg_name as *mut _ as *mut _;
msg.msg_namelen = msg_namelen;
msg.msg_iov = bufs.as_ptr() as *mut _;
cfg_if::cfg_if! {
if #[cfg(any(target_os = "android", all(target_os = "linux", target_env = "gnu")))] {
msg.msg_iovlen = bufs.len() as libc::size_t;
msg.msg_controllen = ancillary.length as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
msg.msg_iovlen = bufs.len() as libc::c_int;
msg.msg_controllen = ancillary.length as libc::socklen_t;
}
}
msg.msg_iovlen = bufs.len() as _;
msg.msg_controllen = ancillary.length as _;
// macos requires that the control pointer is null when the len is 0.
if msg.msg_controllen > 0 {
msg.msg_control = ancillary.buffer.as_mut_ptr().cast();
@ -144,21 +114,7 @@ fn add_to_ancillary_data<T>(
let mut msg: libc::msghdr = zeroed();
msg.msg_control = buffer.as_mut_ptr().cast();
cfg_if::cfg_if! {
if #[cfg(any(target_os = "android", all(target_os = "linux", target_env = "gnu")))] {
msg.msg_controllen = *length as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
msg.msg_controllen = *length as libc::socklen_t;
}
}
msg.msg_controllen = *length as _;
let mut cmsg = libc::CMSG_FIRSTHDR(&msg);
let mut previous_cmsg = cmsg;
@ -180,21 +136,7 @@ fn add_to_ancillary_data<T>(
(*previous_cmsg).cmsg_level = cmsg_level;
(*previous_cmsg).cmsg_type = cmsg_type;
cfg_if::cfg_if! {
if #[cfg(any(target_os = "android", all(target_os = "linux", target_env = "gnu")))] {
(*previous_cmsg).cmsg_len = libc::CMSG_LEN(source_len) as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
(*previous_cmsg).cmsg_len = libc::CMSG_LEN(source_len) as libc::socklen_t;
}
}
(*previous_cmsg).cmsg_len = libc::CMSG_LEN(source_len) as _;
let data = libc::CMSG_DATA(previous_cmsg).cast();
@ -364,28 +306,10 @@ impl<'a> AncillaryData<'a> {
fn try_from_cmsghdr(cmsg: &'a libc::cmsghdr) -> Result<Self, AncillaryError> {
unsafe {
cfg_if::cfg_if! {
if #[cfg(any(
target_os = "android",
all(target_os = "linux", target_env = "gnu"),
all(target_os = "linux", target_env = "uclibc"),
))] {
let cmsg_len_zero = libc::CMSG_LEN(0) as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
let cmsg_len_zero = libc::CMSG_LEN(0) as libc::socklen_t;
}
}
let data_len = (*cmsg).cmsg_len - cmsg_len_zero;
let cmsg_len_zero = libc::CMSG_LEN(0) as usize;
let data_len = (*cmsg).cmsg_len as usize - cmsg_len_zero;
let data = libc::CMSG_DATA(cmsg).cast();
let data = from_raw_parts(data, data_len as usize);
let data = from_raw_parts(data, data_len);
match (*cmsg).cmsg_level {
libc::SOL_SOCKET => match (*cmsg).cmsg_type {
@ -419,21 +343,7 @@ impl<'a> Iterator for Messages<'a> {
unsafe {
let mut msg: libc::msghdr = zeroed();
msg.msg_control = self.buffer.as_ptr() as *mut _;
cfg_if::cfg_if! {
if #[cfg(any(target_os = "android", all(target_os = "linux", target_env = "gnu")))] {
msg.msg_controllen = self.buffer.len() as libc::size_t;
} else if #[cfg(any(
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
all(target_os = "linux", target_env = "musl",),
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))] {
msg.msg_controllen = self.buffer.len() as libc::socklen_t;
}
}
msg.msg_controllen = self.buffer.len() as _;
let cmsg = if let Some(current) = self.current {
libc::CMSG_NXTHDR(&msg, current)

View file

@ -10,3 +10,11 @@ mod foo {
#[doc(keyword = "hall")] //~ ERROR
fn foo() {}
// Regression test for the ICE described in #83512.
trait Foo {
#[doc(keyword = "match")]
//~^ ERROR: `#[doc(keyword = "...")]` can only be used on modules
fn quux() {}
}

View file

@ -10,11 +10,17 @@ error: `#[doc(keyword = "...")]` can only be used on modules
LL | #[doc(keyword = "hall")]
| ^^^^^^^^^^^^^^^^
error: `#[doc(keyword = "...")]` can only be used on modules
--> $DIR/doc_keyword.rs:17:11
|
LL | #[doc(keyword = "match")]
| ^^^^^^^^^^^^^^^^^
error: `#![doc(keyword = "...")]` isn't allowed as a crate-level attribute
--> $DIR/doc_keyword.rs:4:8
|
LL | #![doc(keyword = "hello")]
| ^^^^^^^^^^^^^^^^^
error: aborting due to 3 previous errors
error: aborting due to 4 previous errors