Main example for bigint usage.

Also use `///` for documentation instead of `/**`. End comments with
`.`.

Show imports for bigint example.

They might be useful.
This commit is contained in:
Jonas Hietala 2014-07-16 15:51:51 +02:00
parent 6c35d513ce
commit 428c7bc129

View file

@ -8,13 +8,53 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
A `BigUint` is represented as an array of `BigDigit`s.
A `BigInt` is a combination of `BigUint` and `Sign`.
*/
//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as an array of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! use num::bigint::BigUint;
//! use std::num::{Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: uint) -> BigUint {
//! let mut f0: BigUint = Zero::zero();
//! let mut f1: BigUint = One::one();
//! for _ in range(0, n) {
//! let f2 = f0 + f1;
//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
//! f0 = replace(&mut f1, f2);
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! println!("fib(1000) = {}", fib(1000));
//! ```
//!
//! It's easy to generate large random numbers:
//!
//! ```rust
//! use num::bigint::{ToBigInt, RandBigInt};
//! use std::rand;
//!
//! let mut rng = rand::task_rng();
//! let a = rng.gen_bigint(1000u);
//!
//! let low = -10000i.to_bigint().unwrap();
//! let high = 10000i.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! println!("{}", a * b);
//! ```
use Integer;
use rand::Rng;
@ -28,15 +68,11 @@ use std::num::{Zero, One, ToStrRadix, FromStrRadix};
use std::string::String;
use std::{uint, i64, u64};
/**
A `BigDigit` is a `BigUint`'s composing element.
*/
/// A `BigDigit` is a `BigUint`'s composing element.
pub type BigDigit = u32;
/**
A `DoubleBigDigit` is the internal type used to do the computations. Its
size is the double of the size of `BigDigit`.
*/
/// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`.
pub type DoubleBigDigit = u64;
pub static ZERO_BIG_DIGIT: BigDigit = 0;
@ -70,12 +106,10 @@ pub mod BigDigit {
}
}
/**
A big unsigned integer type.
A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number
`(a + b * BigDigit::base + c * BigDigit::base^2)`.
*/
/// A big unsigned integer type.
///
/// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number
/// `(a + b * BigDigit::base + c * BigDigit::base^2)`.
#[deriving(Clone)]
pub struct BigUint {
data: Vec<BigDigit>
@ -460,11 +494,9 @@ impl Integer for BigUint {
}
}
/**
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
*
* The result is always positive
*/
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
///
/// The result is always positive.
#[inline]
fn gcd(&self, other: &BigUint) -> BigUint {
// Use Euclid's algorithm
@ -478,17 +510,15 @@ impl Integer for BigUint {
return n;
}
/**
* Calculates the Lowest Common Multiple (LCM) of the number and `other`
*/
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &BigUint) -> BigUint { ((*self * *other) / self.gcd(other)) }
/// Returns `true` if the number can be divided by `other` without leaving a remainder
/// Returns `true` if the number can be divided by `other` without leaving a remainder.
#[inline]
fn divides(&self, other: &BigUint) -> bool { (*self % *other).is_zero() }
/// Returns `true` if the number is divisible by `2`
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool {
// Considering only the last digit.
@ -498,7 +528,7 @@ impl Integer for BigUint {
}
}
/// Returns `true` if the number is not divisible by `2`
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool { !self.is_even() }
}
@ -1068,33 +1098,29 @@ impl Integer for BigInt {
}
}
/**
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
*
* The result is always positive
*/
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
///
/// The result is always positive.
#[inline]
fn gcd(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.gcd(&other.data))
}
/**
* Calculates the Lowest Common Multiple (LCM) of the number and `other`
*/
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.lcm(&other.data))
}
/// Returns `true` if the number can be divided by `other` without leaving a remainder
/// Returns `true` if the number can be divided by `other` without leaving a remainder.
#[inline]
fn divides(&self, other: &BigInt) -> bool { self.data.divides(&other.data) }
/// Returns `true` if the number is divisible by `2`
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool { self.data.is_even() }
/// Returns `true` if the number is not divisible by `2`
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool { self.data.is_odd() }
}