873: add API guide to ra_syntax r=matklad a=matklad



Co-authored-by: Aleksey Kladov <aleksey.kladov@gmail.com>
This commit is contained in:
bors[bot] 2019-02-21 14:36:08 +00:00
commit 368bc56ac1

View file

@ -14,6 +14,8 @@
//! CST). The actual parser live in a separate `ra_parser` crate, thought the
//! lexer lives in this crate.
//!
//! See `api_walkthrough` test in this file for a quick API tour!
//!
//! [RFC]: <https://github.com/rust-lang/rfcs/pull/2256>
//! [Swift]: <https://github.com/apple/swift/blob/13d593df6f359d0cb2fc81cfaac273297c539455/lib/Syntax/README.md>
@ -87,3 +89,174 @@ pub fn check_fuzz_invariants(text: &str) {
validation::validate_block_structure(root);
let _ = file.errors();
}
/// This test does not assert anything and instead just shows off the crate's
/// API.
#[test]
fn api_walkthrough() {
use ast::{ModuleItemOwner, NameOwner};
let source_code = "
fn foo() {
1 + 1
}
";
// `SourceFile` is the main entry point.
//
// Note how `parse` does not return a `Result`: even completely invalid
// source code might be parsed.
let file = SourceFile::parse(source_code);
// Due to the way ownership is set up, owned syntax Nodes always live behind
// a `TreeArc` smart pointer. `TreeArc` is roughly an `std::sync::Arc` which
// points to the whole file instead of an individual node.
let file: TreeArc<SourceFile> = file;
// `SourceFile` is the root of the syntax tree. We can iterate file's items:
let mut func = None;
for item in file.items() {
match item.kind() {
ast::ModuleItemKind::FnDef(f) => func = Some(f),
_ => unreachable!(),
}
}
// The returned items are always references.
let func: &ast::FnDef = func.unwrap();
// All nodes implement `ToOwned` trait, with `Owned = TreeArc<Self>`.
// `to_owned` is a cheap operation: atomic increment.
let _owned_func: TreeArc<ast::FnDef> = func.to_owned();
// Each AST node has a bunch of getters for children. All getters return
// `Option`s though, to account for incomplete code. Some getters are common
// for several kinds of node. In this case, a trait like `ast::NameOwner`
// usually exists. By convention, all ast types should be used with `ast::`
// qualifier.
let name: Option<&ast::Name> = func.name();
let name = name.unwrap();
assert_eq!(name.text(), "foo");
// Let's get the `1 + 1` expression!
let block: &ast::Block = func.body().unwrap();
let expr: &ast::Expr = block.expr().unwrap();
// "Enum"-like nodes are represented using the "kind" pattern. It allows us
// to match exhaustively against all flavors of nodes, while maintaining
// internal representation flexibility. The drawback is that one can't write
// nested matches as one pattern.
let bin_expr: &ast::BinExpr = match expr.kind() {
ast::ExprKind::BinExpr(e) => e,
_ => unreachable!(),
};
// Besides the "typed" AST API, there's an untyped CST one as well.
// To switch from AST to CST, call `.syntax()` method:
let expr_syntax: &SyntaxNode = expr.syntax();
// Note how `expr` and `bin_expr` are in fact the same node underneath:
assert!(std::ptr::eq(expr_syntax, bin_expr.syntax()));
// To go from CST to AST, `AstNode::cast` function is used:
let expr = match ast::Expr::cast(expr_syntax) {
Some(e) => e,
None => unreachable!(),
};
// Note how expr is also a reference!
let expr: &ast::Expr = expr;
// This is possible because the underlying representation is the same:
assert_eq!(
expr as *const ast::Expr as *const u8,
expr_syntax as *const SyntaxNode as *const u8
);
// The two properties each syntax node has is a `SyntaxKind`:
assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR);
// And text range:
assert_eq!(expr_syntax.range(), TextRange::from_to(32.into(), 37.into()));
// You can get node's text as a `SyntaxText` object, which will traverse the
// tree collecting token's text:
let text: SyntaxText<'_> = expr_syntax.text();
assert_eq!(text.to_string(), "1 + 1");
// There's a bunch of traversal methods on `SyntaxNode`:
assert_eq!(expr_syntax.parent(), Some(block.syntax()));
assert_eq!(block.syntax().first_child().map(|it| it.kind()), Some(SyntaxKind::L_CURLY));
assert_eq!(expr_syntax.next_sibling().map(|it| it.kind()), Some(SyntaxKind::WHITESPACE));
// As well as some iterator helpers:
let f = expr_syntax.ancestors().find_map(ast::FnDef::cast);
assert_eq!(f, Some(&*func));
assert!(expr_syntax.siblings(Direction::Next).any(|it| it.kind() == SyntaxKind::R_CURLY));
assert_eq!(
expr_syntax.descendants().count(),
8, // 5 tokens `1`, ` `, `+`, ` `, `!`
// 2 child literal expressions: `1`, `1`
// 1 the node itself: `1 + 1`
);
// There's also a `preorder` method with a more fine-grained iteration control:
let mut buf = String::new();
let mut indent = 0;
for event in expr_syntax.preorder() {
match event {
WalkEvent::Enter(node) => {
buf += &format!(
"{:indent$}{:?} {:?}\n",
" ",
node.text(),
node.kind(),
indent = indent
);
indent += 2;
}
WalkEvent::Leave(_) => indent -= 2,
}
}
assert_eq!(indent, 0);
assert_eq!(
buf.trim(),
r#"
"1 + 1" BIN_EXPR
"1" LITERAL
"1" INT_NUMBER
" " WHITESPACE
"+" PLUS
" " WHITESPACE
"1" LITERAL
"1" INT_NUMBER
"#
.trim()
);
// To recursively process the tree, there are three approaches:
// 1. explicitly call getter methods on AST nodes.
// 2. use descendants and `AstNode::cast`.
// 3. use descendants and the visitor.
//
// Here's how the first one looks like:
let exprs_cast: Vec<String> = file
.syntax()
.descendants()
.filter_map(ast::Expr::cast)
.map(|expr| expr.syntax().text().to_string())
.collect();
// An alternative is to use a visitor. The visitor does not do traversal
// automatically (so it's more akin to a generic lambda) and is constructed
// from closures. This seems more flexible than a single generated visitor
// trait.
use algo::visit::{visitor, Visitor};
let mut exprs_visit = Vec::new();
for node in file.syntax().descendants() {
if let Some(result) =
visitor().visit::<ast::Expr, _>(|expr| expr.syntax().text().to_string()).accept(node)
{
exprs_visit.push(result);
}
}
assert_eq!(exprs_cast, exprs_visit);
}