auto merge of #8400 : blake2-ppc/rust/seq-ord, r=cmr

Use Eq + Ord for lexicographical ordering of sequences.

For each of <, <=, >= or > as R, use::

    [x, ..xs] R [y, ..ys]  =  if x != y { x R y } else { xs R ys }

Previous code using `a < b` and then `!(b < a)` for short-circuiting
fails on cases such as  [1.0, 2.0] < [0.0/0.0, 3.0], where the first
element was effectively considered equal.

Containers like &[T] did also implement only one comparison operator `<`,
and derived the comparison results from this. This isn't correct either for
Ord.

Implement functions in `std::iterator::order::{lt,le,gt,ge,equal,cmp}` that all
iterable containers can use for lexical order.

We also visit tuple ordering, having the same problem and same solution
(but differing implementation).
This commit is contained in:
bors 2013-08-12 11:53:18 -07:00
commit 35040275b3
6 changed files with 308 additions and 73 deletions

View file

@ -26,6 +26,7 @@ use std::cast;
use std::ptr;
use std::util;
use std::iterator::{FromIterator, Extendable, Invert};
use std::iterator;
use container::Deque;
@ -589,12 +590,27 @@ impl<A, T: Iterator<A>> Extendable<A, T> for DList<A> {
impl<A: Eq> Eq for DList<A> {
fn eq(&self, other: &DList<A>) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
iterator::order::eq(self.iter(), other.iter())
}
#[inline]
fn ne(&self, other: &DList<A>) -> bool {
!self.eq(other)
self.len() != other.len() &&
iterator::order::ne(self.iter(), other.iter())
}
}
impl<A: Eq + Ord> Ord for DList<A> {
fn lt(&self, other: &DList<A>) -> bool {
iterator::order::lt(self.iter(), other.iter())
}
fn le(&self, other: &DList<A>) -> bool {
iterator::order::le(self.iter(), other.iter())
}
fn gt(&self, other: &DList<A>) -> bool {
iterator::order::gt(self.iter(), other.iter())
}
fn ge(&self, other: &DList<A>) -> bool {
iterator::order::ge(self.iter(), other.iter())
}
}
@ -964,6 +980,48 @@ mod tests {
assert_eq!(&n, &m);
}
#[test]
fn test_ord() {
let n: DList<int> = list_from([]);
let m = list_from([1,2,3]);
assert!(n < m);
assert!(m > n);
assert!(n <= n);
assert!(n >= n);
}
#[test]
fn test_ord_nan() {
let nan = 0.0/0.0;
let n = list_from([nan]);
let m = list_from([nan]);
assert!(!(n < m));
assert!(!(n > m));
assert!(!(n <= m));
assert!(!(n >= m));
let n = list_from([nan]);
let one = list_from([1.0]);
assert!(!(n < one));
assert!(!(n > one));
assert!(!(n <= one));
assert!(!(n >= one));
let u = list_from([1.0,2.0,nan]);
let v = list_from([1.0,2.0,3.0]);
assert!(!(u < v));
assert!(!(u > v));
assert!(!(u <= v));
assert!(!(u >= v));
let s = list_from([1.0,2.0,4.0,2.0]);
let t = list_from([1.0,2.0,3.0,2.0]);
assert!(!(s < t));
assert!(s > one);
assert!(!(s <= one));
assert!(s >= one);
}
#[test]
fn test_fuzz() {
do 25.times {

View file

@ -1568,6 +1568,163 @@ impl<A: Clone> RandomAccessIterator<A> for Repeat<A> {
fn idx(&self, _: uint) -> Option<A> { Some(self.element.clone()) }
}
/// Functions for lexicographical ordering of sequences.
///
/// Lexicographical ordering through `<`, `<=`, `>=`, `>` requires
/// that the elements implement both `Eq` and `Ord`.
///
/// If two sequences are equal up until the point where one ends,
/// the shorter sequence compares less.
pub mod order {
use cmp;
use cmp::{TotalEq, TotalOrd, Ord, Eq};
use option::{Some, None};
use super::Iterator;
/// Compare `a` and `b` for equality using `TotalOrd`
pub fn equals<A: TotalEq, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return true,
(None, _) | (_, None) => return false,
(Some(x), Some(y)) => if !x.equals(&y) { return false },
}
}
}
/// Order `a` and `b` lexicographically using `TotalOrd`
pub fn cmp<A: TotalOrd, T: Iterator<A>>(mut a: T, mut b: T) -> cmp::Ordering {
loop {
match (a.next(), b.next()) {
(None, None) => return cmp::Equal,
(None, _ ) => return cmp::Less,
(_ , None) => return cmp::Greater,
(Some(x), Some(y)) => match x.cmp(&y) {
cmp::Equal => (),
non_eq => return non_eq,
},
}
}
}
/// Compare `a` and `b` for equality (Using partial equality, `Eq`)
pub fn eq<A: Eq, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return true,
(None, _) | (_, None) => return false,
(Some(x), Some(y)) => if !x.eq(&y) { return false },
}
}
}
/// Compare `a` and `b` for nonequality (Using partial equality, `Eq`)
pub fn ne<A: Eq, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return false,
(None, _) | (_, None) => return true,
(Some(x), Some(y)) => if x.ne(&y) { return true },
}
}
}
/// Return `a` < `b` lexicographically (Using partial order, `Ord`)
pub fn lt<A: Eq + Ord, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return false,
(None, _ ) => return true,
(_ , None) => return false,
(Some(x), Some(y)) => if x.ne(&y) { return x.lt(&y) },
}
}
}
/// Return `a` <= `b` lexicographically (Using partial order, `Ord`)
pub fn le<A: Eq + Ord, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return true,
(None, _ ) => return true,
(_ , None) => return false,
(Some(x), Some(y)) => if x.ne(&y) { return x.le(&y) },
}
}
}
/// Return `a` > `b` lexicographically (Using partial order, `Ord`)
pub fn gt<A: Eq + Ord, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return false,
(None, _ ) => return false,
(_ , None) => return true,
(Some(x), Some(y)) => if x.ne(&y) { return x.gt(&y) },
}
}
}
/// Return `a` >= `b` lexicographically (Using partial order, `Ord`)
pub fn ge<A: Eq + Ord, T: Iterator<A>>(mut a: T, mut b: T) -> bool {
loop {
match (a.next(), b.next()) {
(None, None) => return true,
(None, _ ) => return false,
(_ , None) => return true,
(Some(x), Some(y)) => if x.ne(&y) { return x.ge(&y) },
}
}
}
#[test]
fn test_lt() {
use vec::ImmutableVector;
let empty: [int, ..0] = [];
let xs = [1,2,3];
let ys = [1,2,0];
assert!(!lt(xs.iter(), ys.iter()));
assert!(!le(xs.iter(), ys.iter()));
assert!( gt(xs.iter(), ys.iter()));
assert!( ge(xs.iter(), ys.iter()));
assert!( lt(ys.iter(), xs.iter()));
assert!( le(ys.iter(), xs.iter()));
assert!(!gt(ys.iter(), xs.iter()));
assert!(!ge(ys.iter(), xs.iter()));
assert!( lt(empty.iter(), xs.iter()));
assert!( le(empty.iter(), xs.iter()));
assert!(!gt(empty.iter(), xs.iter()));
assert!(!ge(empty.iter(), xs.iter()));
// Sequence with NaN
let u = [1.0, 2.0];
let v = [0.0/0.0, 3.0];
assert!(!lt(u.iter(), v.iter()));
assert!(!le(u.iter(), v.iter()));
assert!(!gt(u.iter(), v.iter()));
assert!(!ge(u.iter(), v.iter()));
let a = [0.0/0.0];
let b = [1.0];
let c = [2.0];
assert!(lt(a.iter(), b.iter()) == (a[0] < b[0]));
assert!(le(a.iter(), b.iter()) == (a[0] <= b[0]));
assert!(gt(a.iter(), b.iter()) == (a[0] > b[0]));
assert!(ge(a.iter(), b.iter()) == (a[0] >= b[0]));
assert!(lt(c.iter(), b.iter()) == (c[0] < b[0]));
assert!(le(c.iter(), b.iter()) == (c[0] <= b[0]));
assert!(gt(c.iter(), b.iter()) == (c[0] > b[0]));
assert!(ge(c.iter(), b.iter()) == (c[0] >= b[0]));
}
}
#[cfg(test)]
mod tests {
use super::*;

View file

@ -47,6 +47,7 @@ use ops::Add;
use util;
use num::Zero;
use iterator::Iterator;
use iterator;
use str::{StrSlice, OwnedStr};
use to_str::ToStr;
use clone::DeepClone;
@ -58,31 +59,21 @@ pub enum Option<T> {
Some(T),
}
impl<T:Ord> Ord for Option<T> {
impl<T: Eq + Ord> Ord for Option<T> {
fn lt(&self, other: &Option<T>) -> bool {
match (self, other) {
(&None, &None) => false,
(&None, &Some(_)) => true,
(&Some(_), &None) => false,
(&Some(ref a), &Some(ref b)) => *a < *b
}
iterator::order::lt(self.iter(), other.iter())
}
fn le(&self, other: &Option<T>) -> bool {
match (self, other) {
(&None, &None) => true,
(&None, &Some(_)) => true,
(&Some(_), &None) => false,
(&Some(ref a), &Some(ref b)) => *a <= *b
}
iterator::order::le(self.iter(), other.iter())
}
fn ge(&self, other: &Option<T>) -> bool {
!(self < other)
iterator::order::ge(self.iter(), other.iter())
}
fn gt(&self, other: &Option<T>) -> bool {
!(self <= other)
iterator::order::gt(self.iter(), other.iter())
}
}
@ -553,6 +544,18 @@ mod tests {
assert!(it.next().is_none());
}
#[test]
fn test_ord() {
let small = Some(1.0);
let big = Some(5.0);
let nan = Some(0.0/0.0);
assert!(!(nan < big));
assert!(!(nan > big));
assert!(small < big);
assert!(None < big);
assert!(big > None);
}
#[test]
fn test_mutate() {
let mut x = Some(3i);

View file

@ -70,6 +70,7 @@ pub use from_str::FromStr;
pub use to_bytes::IterBytes;
pub use to_str::{ToStr, ToStrConsume};
pub use tuple::{CopyableTuple, ImmutableTuple, ExtendedTupleOps};
pub use tuple::{CloneableTuple1, ImmutableTuple1};
pub use tuple::{CloneableTuple2, CloneableTuple3, CloneableTuple4, CloneableTuple5};
pub use tuple::{CloneableTuple6, CloneableTuple7, CloneableTuple8, CloneableTuple9};
pub use tuple::{CloneableTuple10, CloneableTuple11, CloneableTuple12};

View file

@ -148,7 +148,7 @@ macro_rules! tuple_impls {
$(fn $get_fn(&self) -> $T;)+
}
impl<$($T:Clone),+> $cloneable_trait<$($T),+> for ($($T),+) {
impl<$($T:Clone),+> $cloneable_trait<$($T),+> for ($($T,)+) {
$(
#[inline]
fn $get_fn(&self) -> $T {
@ -161,7 +161,7 @@ macro_rules! tuple_impls {
$(fn $get_ref_fn<'a>(&'a self) -> &'a $T;)+
}
impl<$($T),+> $immutable_trait<$($T),+> for ($($T),+) {
impl<$($T),+> $immutable_trait<$($T),+> for ($($T,)+) {
$(
#[inline]
fn $get_ref_fn<'a>(&'a self) -> &'a $T {
@ -170,59 +170,65 @@ macro_rules! tuple_impls {
)+
}
impl<$($T:Clone),+> Clone for ($($T),+) {
fn clone(&self) -> ($($T),+) {
($(self.$get_ref_fn().clone()),+)
impl<$($T:Clone),+> Clone for ($($T,)+) {
fn clone(&self) -> ($($T,)+) {
($(self.$get_ref_fn().clone(),)+)
}
}
#[cfg(not(test))]
impl<$($T:Eq),+> Eq for ($($T),+) {
impl<$($T:Eq),+> Eq for ($($T,)+) {
#[inline]
fn eq(&self, other: &($($T),+)) -> bool {
fn eq(&self, other: &($($T,)+)) -> bool {
$(*self.$get_ref_fn() == *other.$get_ref_fn())&&+
}
#[inline]
fn ne(&self, other: &($($T),+)) -> bool {
!(*self == *other)
fn ne(&self, other: &($($T,)+)) -> bool {
$(*self.$get_ref_fn() != *other.$get_ref_fn())||+
}
}
#[cfg(not(test))]
impl<$($T:TotalEq),+> TotalEq for ($($T),+) {
impl<$($T:TotalEq),+> TotalEq for ($($T,)+) {
#[inline]
fn equals(&self, other: &($($T),+)) -> bool {
fn equals(&self, other: &($($T,)+)) -> bool {
$(self.$get_ref_fn().equals(other.$get_ref_fn()))&&+
}
}
#[cfg(not(test))]
impl<$($T:Ord),+> Ord for ($($T),+) {
impl<$($T:Ord + Eq),+> Ord for ($($T,)+) {
#[inline]
fn lt(&self, other: &($($T),+)) -> bool {
lexical_lt!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
fn lt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(lt, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn le(&self, other: &($($T),+)) -> bool { !(*other).lt(&(*self)) }
fn le(&self, other: &($($T,)+)) -> bool {
lexical_ord!(le, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn ge(&self, other: &($($T),+)) -> bool { !(*self).lt(other) }
fn ge(&self, other: &($($T,)+)) -> bool {
lexical_ord!(ge, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
#[inline]
fn gt(&self, other: &($($T),+)) -> bool { (*other).lt(&(*self)) }
fn gt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(gt, $(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
}
#[cfg(not(test))]
impl<$($T:TotalOrd),+> TotalOrd for ($($T),+) {
impl<$($T:TotalOrd),+> TotalOrd for ($($T,)+) {
#[inline]
fn cmp(&self, other: &($($T),+)) -> Ordering {
fn cmp(&self, other: &($($T,)+)) -> Ordering {
lexical_cmp!($(self.$get_ref_fn(), other.$get_ref_fn()),+)
}
}
#[cfg(not(test))]
impl<$($T:Zero),+> Zero for ($($T),+) {
impl<$($T:Zero),+> Zero for ($($T,)+) {
#[inline]
fn zero() -> ($($T),+) {
($(Zero::zero::<$T>()),+)
fn zero() -> ($($T,)+) {
($(Zero::zero::<$T>(),)+)
}
#[inline]
fn is_zero(&self) -> bool {
@ -234,17 +240,16 @@ macro_rules! tuple_impls {
}
}
// Constructs an expression that performs a lexical less-than
// ordering. The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_lt!(a1, b1, a2, b2,
// Constructs an expression that performs a lexical ordering using method $rel.
// The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2,
// a3, b3)` (and similarly for `lexical_cmp`)
macro_rules! lexical_lt {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a < *$b { true }
else if !(*$b < *$a) { lexical_lt!($($rest_a, $rest_b),+) }
else { false }
macro_rules! lexical_ord {
($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a != *$b { lexical_ord!($rel, $a, $b) }
else { lexical_ord!($rel, $($rest_a, $rest_b),+) }
};
($a:expr, $b:expr) => { *$a < *$b };
($rel: ident, $a:expr, $b:expr) => { (*$a) . $rel ($b) };
}
macro_rules! lexical_cmp {
@ -259,6 +264,10 @@ macro_rules! lexical_cmp {
tuple_impls! {
(CloneableTuple1, ImmutableTuple1) {
(n0, n0_ref) -> A { (ref a,) => a }
}
(CloneableTuple2, ImmutableTuple2) {
(n0, n0_ref) -> A { (ref a,_) => a }
(n1, n1_ref) -> B { (_,ref b) => b }
@ -432,6 +441,8 @@ mod tests {
fn test_tuple_cmp() {
let (small, big) = ((1u, 2u, 3u), (3u, 2u, 1u));
let nan = 0.0/0.0;
// Eq
assert_eq!(small, small);
assert_eq!(big, big);
@ -452,6 +463,13 @@ mod tests {
assert!(big >= small);
assert!(big >= big);
assert!(!((1.0, 2.0) < (nan, 3.0)));
assert!(!((1.0, 2.0) <= (nan, 3.0)));
assert!(!((1.0, 2.0) > (nan, 3.0)));
assert!(!((1.0, 2.0) >= (nan, 3.0)));
assert!(((1.0, 2.0) < (2.0, nan)));
assert!(!((2.0, 2.0) < (2.0, nan)));
// TotalEq
assert!(small.equals(&small));
assert!(big.equals(&big));

View file

@ -564,17 +564,19 @@ pub mod traits {
use super::*;
use clone::Clone;
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equal, Equiv};
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv};
use iterator::order;
use ops::Add;
use option::{Some, None};
impl<'self,T:Eq> Eq for &'self [T] {
fn eq(&self, other: & &'self [T]) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(s,o)| *s == *o)
order::eq(self.iter(), other.iter())
}
fn ne(&self, other: & &'self [T]) -> bool {
self.len() != other.len() ||
order::ne(self.iter(), other.iter())
}
#[inline]
fn ne(&self, other: & &'self [T]) -> bool { !self.eq(other) }
}
impl<T:Eq> Eq for ~[T] {
@ -594,7 +596,7 @@ pub mod traits {
impl<'self,T:TotalEq> TotalEq for &'self [T] {
fn equals(&self, other: & &'self [T]) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(s,o)| s.equals(o))
order::equals(self.iter(), other.iter())
}
}
@ -625,13 +627,7 @@ pub mod traits {
impl<'self,T:TotalOrd> TotalOrd for &'self [T] {
fn cmp(&self, other: & &'self [T]) -> Ordering {
for (s,o) in self.iter().zip(other.iter()) {
match s.cmp(o) {
Equal => {},
non_eq => { return non_eq; }
}
}
self.len().cmp(&other.len())
order::cmp(self.iter(), other.iter())
}
}
@ -645,23 +641,25 @@ pub mod traits {
fn cmp(&self, other: &@[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
}
impl<'self,T:Ord> Ord for &'self [T] {
impl<'self, T: Eq + Ord> Ord for &'self [T] {
fn lt(&self, other: & &'self [T]) -> bool {
for (s,o) in self.iter().zip(other.iter()) {
if *s < *o { return true; }
if *s > *o { return false; }
}
self.len() < other.len()
order::lt(self.iter(), other.iter())
}
#[inline]
fn le(&self, other: & &'self [T]) -> bool { !(*other < *self) }
fn le(&self, other: & &'self [T]) -> bool {
order::le(self.iter(), other.iter())
}
#[inline]
fn ge(&self, other: & &'self [T]) -> bool { !(*self < *other) }
fn ge(&self, other: & &'self [T]) -> bool {
order::ge(self.iter(), other.iter())
}
#[inline]
fn gt(&self, other: & &'self [T]) -> bool { *other < *self }
fn gt(&self, other: & &'self [T]) -> bool {
order::gt(self.iter(), other.iter())
}
}
impl<T:Ord> Ord for ~[T] {
impl<T: Eq + Ord> Ord for ~[T] {
#[inline]
fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() }
#[inline]
@ -672,7 +670,7 @@ pub mod traits {
fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() }
}
impl<T:Ord> Ord for @[T] {
impl<T: Eq + Ord> Ord for @[T] {
#[inline]
fn lt(&self, other: &@[T]) -> bool { self.as_slice() < other.as_slice() }
#[inline]