rust/clippy_lints/src/misc.rs

462 lines
16 KiB
Rust
Raw Normal View History

2016-02-24 17:38:57 +01:00
use reexport::*;
use rustc::hir::*;
use rustc::hir::intravisit::FnKind;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::ty;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::eval_const_expr_partial;
use rustc_const_math::ConstFloat;
use syntax::codemap::{Span, Spanned, ExpnFormat};
use utils::{
2016-06-15 16:27:56 +02:00
get_item_name, get_parent_expr, implements_trait, in_macro, is_integer_literal, match_path,
snippet, span_lint, span_lint_and_then, walk_ptrs_ty
};
2016-06-29 21:25:23 +02:00
use utils::sugg::Sugg;
/// **What it does:** Checks for function arguments and let bindings denoted as `ref`.
///
/// **Why is this bad?** The `ref` declaration makes the function take an owned
/// value, but turns the argument into a reference (which means that the value
/// is destroyed when exiting the function). This adds not much value: either
/// take a reference type, or take an owned value and create references in the
/// body.
///
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
/// type of `x` is more obvious with the former.
///
/// **Known problems:** If the argument is dereferenced within the function,
/// removing the `ref` will lead to errors. This can be fixed by removing the
/// dereferences, e.g. changing `*x` to `x` within the function.
///
2016-07-16 00:25:44 +02:00
/// **Example:**
/// ```rust
/// fn foo(ref x: u8) -> bool { .. }
/// ```
declare_lint! {
pub TOPLEVEL_REF_ARG,
Warn,
"an entire binding declared as `ref`, in a function argument or a `let` statement"
}
/// **What it does:** Checks for comparisons to NaN.
///
/// **Why is this bad?** NaN does not compare meaningfully to anything not
/// even itself so those comparisons are simply wrong.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x == NAN
/// ```
declare_lint! {
pub CMP_NAN,
Deny,
"comparisons to NAN, which will always return false, probably not intended"
}
/// **What it does:** Checks for (in-)equality comparisons on floating-point
/// values (apart from zero), except in functions called `*eq*` (which probably
/// implement equality for a type involving floats).
///
/// **Why is this bad?** Floating point calculations are usually imprecise, so
/// asking if two values are *exactly* equal is asking for trouble. For a good
/// guide on what to do, see [the floating point
/// guide](http://www.floating-point-gui.de/errors/comparison).
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// y == 1.23f64
/// y != x // where both are floats
/// ```
declare_lint! {
pub FLOAT_CMP,
Warn,
"using `==` or `!=` on float values instead of comparing difference with an epsilon"
}
/// **What it does:** Checks for conversions to owned values just for the sake
/// of a comparison.
///
/// **Why is this bad?** The comparison can operate on a reference, so creating
/// an owned value effectively throws it away directly afterwards, which is
/// needlessly consuming code and heap space.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.to_owned() == y
/// ```
declare_lint! {
pub CMP_OWNED,
Warn,
"creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`"
}
/// **What it does:** Checks for getting the remainder of a division by one.
///
/// **Why is this bad?** The result can only ever be zero. No one will write
/// such code deliberately, unless trying to win an Underhanded Rust
/// Contest. Even for that contest, it's probably a bad idea. Use something more
/// underhanded.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x % 1
/// ```
declare_lint! {
pub MODULO_ONE,
Warn,
"taking a number modulo 1, which always returns 0"
}
/// **What it does:** Checks for patterns in the form `name @ _`.
///
/// **Why is this bad?** It's almost always more readable to just use direct bindings.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// match v {
/// Some(x) => (),
/// y @ _ => (), // easier written as `y`,
/// }
/// ```
declare_lint! {
pub REDUNDANT_PATTERN,
Warn,
"using `name @ _` in a pattern"
}
/// **What it does:** Checks for the use of bindings with a single leading underscore.
///
/// **Why is this bad?** A single leading underscore is usually used to indicate
/// that a binding will not be used. Using such a binding breaks this
/// expectation.
///
/// **Known problems:** The lint does not work properly with desugaring and
/// macro, it has been allowed in the mean time.
///
/// **Example:**
/// ```rust
/// let _x = 0;
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading underscore.
/// // We should rename `_x` to `x`
/// ```
declare_lint! {
pub USED_UNDERSCORE_BINDING,
Allow,
"using a binding which is prefixed with an underscore"
}
#[derive(Copy, Clone)]
pub struct Pass;
impl LintPass for Pass {
fn get_lints(&self) -> LintArray {
lint_array!(TOPLEVEL_REF_ARG, CMP_NAN, FLOAT_CMP, CMP_OWNED, MODULO_ONE, REDUNDANT_PATTERN,
USED_UNDERSCORE_BINDING)
}
}
impl LateLintPass for Pass {
fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Expr, _: Span, _: NodeId) {
2016-03-23 16:11:24 +01:00
if let FnKind::Closure(_) = k {
// Does not apply to closures
2016-01-04 05:26:12 +01:00
return;
}
2016-08-01 16:59:14 +02:00
for arg in &decl.inputs {
if let PatKind::Binding(BindByRef(_), _, _, _) = arg.pat.node {
span_lint(cx,
2016-01-04 05:26:12 +01:00
TOPLEVEL_REF_ARG,
arg.pat.span,
"`ref` directly on a function argument is ignored. Consider using a reference type instead.");
}
}
}
fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) {
2016-06-06 02:09:19 +02:00
if_let_chain! {[
let StmtDecl(ref d, _) = s.node,
let DeclLocal(ref l) = d.node,
let PatKind::Binding(BindByRef(mt), _, i, None) = l.pat.node,
let Some(ref init) = l.init
2016-06-06 02:09:19 +02:00
], {
let init = Sugg::hir(cx, init, "..");
let (mutopt,initref) = if mt == Mutability::MutMutable {
("mut ", init.mut_addr())
2016-06-06 02:09:19 +02:00
} else {
("", init.addr())
2016-06-06 02:09:19 +02:00
};
let tyopt = if let Some(ref ty) = l.ty {
format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_"))
} else {
"".to_owned()
};
2016-06-06 02:09:19 +02:00
span_lint_and_then(cx,
TOPLEVEL_REF_ARG,
l.pat.span,
2016-06-29 22:45:58 +02:00
"`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
2016-06-06 02:09:19 +02:00
|db| {
db.span_suggestion(s.span,
"try",
format!("let {name}{tyopt} = {initref};",
name=snippet(cx, i.span, "_"),
tyopt=tyopt,
initref=initref));
2016-06-06 02:09:19 +02:00
}
);
}}
}
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
let op = cmp.node;
if op.is_comparison() {
if let ExprPath(QPath::Resolved(_, ref path)) = left.node {
check_nan(cx, path, expr.span);
}
if let ExprPath(QPath::Resolved(_, ref path)) = right.node {
check_nan(cx, path, expr.span);
}
check_to_owned(cx, left, right, true, cmp.span);
check_to_owned(cx, right, left, false, cmp.span)
}
if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) {
2016-01-04 05:26:12 +01:00
if is_allowed(cx, left) || is_allowed(cx, right) {
return;
}
2015-09-06 21:03:09 +02:00
if let Some(name) = get_item_name(cx, expr) {
let name = &*name.as_str();
2016-01-04 05:26:12 +01:00
if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") ||
name.ends_with("_eq") {
2015-09-06 21:03:09 +02:00
return;
}
2015-09-02 10:30:11 +02:00
}
2016-06-29 19:47:51 +02:00
span_lint_and_then(cx,
FLOAT_CMP,
expr.span,
"strict comparison of f32 or f64",
|db| {
let lhs = Sugg::hir(cx, left, "..");
let rhs = Sugg::hir(cx, right, "..");
db.span_suggestion(expr.span,
"consider comparing them within some error",
format!("({}).abs() < error", lhs - rhs));
db.span_note(expr.span, "std::f32::EPSILON and std::f64::EPSILON are available.");
});
} else if op == BiRem && is_integer_literal(right, 1) {
span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0");
}
}
if in_attributes_expansion(cx, expr) {
// Don't lint things expanded by #[derive(...)], etc
return;
}
let binding = match expr.node {
ExprPath(ref qpath) => {
if let QPath::Resolved(_, ref path) = *qpath {
let binding = path.segments
.last()
.expect("path should always have at least one segment")
.name
.as_str();
if binding.starts_with('_') &&
!binding.starts_with("__") &&
&*binding != "_result" && // FIXME: #944
is_used(cx, expr) &&
// don't lint if the declaration is in a macro
non_macro_local(cx, &cx.tcx.tables().qpath_def(qpath, expr.id)) {
Some(binding)
} else {
None
}
} else {
None
}
}
ExprField(_, spanned) => {
let name = spanned.node.as_str();
if name.starts_with('_') && !name.starts_with("__") {
Some(name)
} else {
None
}
}
_ => None,
};
if let Some(binding) = binding {
span_lint(cx,
USED_UNDERSCORE_BINDING,
expr.span,
&format!("used binding `{}` which is prefixed with an underscore. A leading \
underscore signals that a binding will not be used.", binding));
}
}
2016-06-29 21:25:23 +02:00
fn check_pat(&mut self, cx: &LateContext, pat: &Pat) {
if let PatKind::Binding(_, _, ref ident, Some(ref right)) = pat.node {
if right.node == PatKind::Wild {
span_lint(cx,
REDUNDANT_PATTERN,
pat.span,
&format!("the `{} @ _` pattern can be written as just `{}`",
ident.node,
ident.node));
}
}
}
}
fn check_nan(cx: &LateContext, path: &Path, span: Span) {
path.segments.last().map(|seg| {
if &*seg.name.as_str() == "NAN" {
span_lint(cx,
CMP_NAN,
span,
"doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead");
}
});
}
fn is_allowed(cx: &LateContext, expr: &Expr) -> bool {
let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None);
if let Ok(ConstVal::Float(val)) = res {
use std::cmp::Ordering;
let zero = ConstFloat::FInfer {
f32: 0.0,
f64: 0.0,
};
let infinity = ConstFloat::FInfer {
f32: ::std::f32::INFINITY,
f64: ::std::f64::INFINITY,
};
let neg_infinity = ConstFloat::FInfer {
f32: ::std::f32::NEG_INFINITY,
f64: ::std::f64::NEG_INFINITY,
};
val.try_cmp(zero) == Ok(Ordering::Equal)
|| val.try_cmp(infinity) == Ok(Ordering::Equal)
|| val.try_cmp(neg_infinity) == Ok(Ordering::Equal)
2016-01-04 05:26:12 +01:00
} else {
false
}
}
fn is_float(cx: &LateContext, expr: &Expr) -> bool {
matches!(walk_ptrs_ty(cx.tcx.tables().expr_ty(expr)).sty, ty::TyFloat(_))
}
2015-05-06 12:59:08 +02:00
2016-01-18 15:35:50 +01:00
fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) {
let (arg_ty, snip) = match expr.node {
2016-04-14 20:14:03 +02:00
ExprMethodCall(Spanned { node: ref name, .. }, _, ref args) if args.len() == 1 => {
let name = &*name.as_str();
if name == "to_string" || name == "to_owned" && is_str_arg(cx, args) {
(cx.tcx.tables().expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
2016-01-04 05:26:12 +01:00
} else {
return;
}
}
ExprCall(ref path, ref v) if v.len() == 1 => {
if let ExprPath(ref path) = path.node {
2016-01-04 05:26:12 +01:00
if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) {
(cx.tcx.tables().expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
2016-01-04 05:26:12 +01:00
} else {
return;
}
} else {
2016-01-04 05:26:12 +01:00
return;
}
}
2016-01-04 05:26:12 +01:00
_ => return,
};
2016-01-18 15:35:50 +01:00
let other_ty = cx.tcx.tables().expr_ty(other);
2016-01-18 15:35:50 +01:00
let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() {
Some(id) => id,
None => return,
};
if !implements_trait(cx, arg_ty, partial_eq_trait_id, vec![other_ty]) {
2016-01-18 15:35:50 +01:00
return;
}
if left {
2016-01-04 05:26:12 +01:00
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
snip,
snippet(cx, op, "=="),
2016-01-18 15:35:50 +01:00
snippet(cx, other.span, "..")));
} else {
2016-01-04 05:26:12 +01:00
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
2016-01-18 15:35:50 +01:00
snippet(cx, other.span, ".."),
2016-01-04 05:26:12 +01:00
snippet(cx, op, "=="),
snip));
}
2015-05-21 14:51:43 +02:00
}
fn is_str_arg(cx: &LateContext, args: &[Expr]) -> bool {
2016-01-04 05:26:12 +01:00
args.len() == 1 &&
matches!(walk_ptrs_ty(cx.tcx.tables().expr_ty(&args[0])).sty, ty::TyStr)
}
2015-08-11 18:55:07 +02:00
/// Heuristic to see if an expression is used. Should be compatible with `unused_variables`'s idea
/// of what it means for an expression to be "used".
fn is_used(cx: &LateContext, expr: &Expr) -> bool {
2016-08-01 16:59:14 +02:00
if let Some(parent) = get_parent_expr(cx, expr) {
match parent.node {
2016-04-14 20:14:03 +02:00
ExprAssign(_, ref rhs) |
ExprAssignOp(_, _, ref rhs) => **rhs == *expr,
2016-04-26 17:05:39 +02:00
_ => is_used(cx, parent),
}
2016-01-04 05:26:12 +01:00
} else {
true
}
}
/// Test whether an expression is in a macro expansion (e.g. something generated by
/// `#[derive(...)`] or the like).
fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool {
cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| {
info_opt.map_or(false, |info| {
2016-06-05 20:46:42 +02:00
matches!(info.callee.format, ExpnFormat::MacroAttribute(_))
})
})
}
2016-06-15 16:27:56 +02:00
/// Test whether `def` is a variable defined outside a macro.
fn non_macro_local(cx: &LateContext, def: &def::Def) -> bool {
match *def {
def::Def::Local(id) | def::Def::Upvar(id, _, _) => {
let id = cx.tcx.map.as_local_node_id(id).expect("That DefId should be valid");
2016-06-15 16:27:56 +02:00
if let Some(span) = cx.tcx.map.opt_span(id) {
!in_macro(cx, span)
} else {
true
}
}
_ => false,
}
}