llvm/flang/lib/semantics/symbol.h
Tim Keith 8d959bb943 [flang] Add support for type-bound generics
Record the bindings in a symbol with GenericBindingDetails, including
bindings inherited from extended types. Check that they have consistent
accessibility.

Original-commit: flang-compiler/f18@0f780abcea
Reviewed-on: https://github.com/flang-compiler/f18/pull/249
2018-12-26 14:31:26 -08:00

438 lines
14 KiB
C++

// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_SEMANTICS_SYMBOL_H_
#define FORTRAN_SEMANTICS_SYMBOL_H_
#include "type.h"
#include "../common/enum-set.h"
#include "../common/fortran.h"
#include <functional>
#include <list>
#include <optional>
namespace Fortran::semantics {
/// A Symbol consists of common information (name, owner, and attributes)
/// and details information specific to the kind of symbol, represented by the
/// *Details classes.
class Scope;
class Symbol;
using SymbolList = std::list<const Symbol *>;
// A module or submodule.
class ModuleDetails {
public:
ModuleDetails(bool isSubmodule = false) : isSubmodule_{isSubmodule} {}
bool isSubmodule() const { return isSubmodule_; }
const Scope *scope() const { return scope_; }
const Scope *ancestor() const; // for submodule; nullptr for module
const Scope *parent() const; // for submodule; nullptr for module
void set_scope(const Scope *);
private:
bool isSubmodule_;
const Scope *scope_{nullptr};
};
class MainProgramDetails {
public:
private:
};
class SubprogramDetails {
public:
SubprogramDetails() {}
SubprogramDetails(const SubprogramDetails &that)
: dummyArgs_{that.dummyArgs_}, result_{that.result_} {}
bool isFunction() const { return result_.has_value(); }
bool isInterface() const { return isInterface_; }
void set_isInterface(bool value = true) { isInterface_ = value; }
const Symbol &result() const {
CHECK(isFunction());
return **result_;
}
void set_result(Symbol &result) {
CHECK(!result_.has_value());
result_ = &result;
}
const std::list<Symbol *> &dummyArgs() const { return dummyArgs_; }
void add_dummyArg(Symbol &symbol) { dummyArgs_.push_back(&symbol); }
private:
std::list<Symbol *> dummyArgs_;
std::optional<Symbol *> result_;
bool isInterface_{false}; // true if this represents an interface-body
friend std::ostream &operator<<(std::ostream &, const SubprogramDetails &);
};
// For SubprogramNameDetails, the kind indicates whether it is the name
// of a module subprogram or internal subprogram.
ENUM_CLASS(SubprogramKind, Module, Internal)
// Symbol with SubprogramNameDetails is created when we scan for module and
// internal procedure names, to record that there is a subprogram with this
// name. Later they are replaced by SubprogramDetails with dummy and result
// type information.
class SubprogramNameDetails {
public:
SubprogramNameDetails(SubprogramKind kind) : kind_{kind} {}
SubprogramNameDetails() = delete;
SubprogramKind kind() const { return kind_; }
private:
SubprogramKind kind_;
};
// A name from an entity-decl -- could be object or function.
class EntityDetails {
public:
EntityDetails(bool isDummy = false) : isDummy_{isDummy} {}
const DeclTypeSpec *type() const { return type_; }
void set_type(const DeclTypeSpec &type);
bool isDummy() const { return isDummy_; }
private:
bool isDummy_;
const DeclTypeSpec *type_{nullptr};
friend std::ostream &operator<<(std::ostream &, const EntityDetails &);
};
// An entity known to be an object.
class ObjectEntityDetails {
public:
ObjectEntityDetails(const EntityDetails &);
ObjectEntityDetails(bool isDummy = false) : isDummy_{isDummy} {}
MaybeExpr &init() { return init_; }
const MaybeExpr &init() const { return init_; }
void set_init(MaybeExpr &&expr) { init_ = std::move(expr); }
const DeclTypeSpec *type() const { return type_; }
void set_type(const DeclTypeSpec &type);
ArraySpec &shape() { return shape_; }
const ArraySpec &shape() const { return shape_; }
void set_shape(const ArraySpec &shape);
bool isDummy() const { return isDummy_; }
bool IsArray() const { return !shape_.empty(); }
bool IsAssumedSize() const {
return isDummy() && IsArray() && shape_.back().ubound().isAssumed() &&
!shape_.back().lbound().isAssumed();
}
bool IsAssumedRank() const {
return isDummy() && IsArray() && shape_.back().ubound().isAssumed() &&
shape_.back().lbound().isAssumed();
}
private:
bool isDummy_;
MaybeExpr init_;
const DeclTypeSpec *type_{nullptr};
ArraySpec shape_;
friend std::ostream &operator<<(std::ostream &, const ObjectEntityDetails &);
};
// A procedure pointer, dummy procedure, or external procedure
class ProcEntityDetails {
public:
ProcEntityDetails() = default;
ProcEntityDetails(const EntityDetails &d);
const ProcInterface &interface() const { return interface_; }
ProcInterface &interface() { return interface_; }
void set_interface(const ProcInterface &interface) { interface_ = interface; }
bool HasExplicitInterface() const;
private:
ProcInterface interface_;
friend std::ostream &operator<<(std::ostream &, const ProcEntityDetails &);
};
class DerivedTypeDetails {
public:
const std::list<SourceName> &paramNames() const { return paramNames_; }
const Symbol *extends() const { return extends_; }
bool sequence() const { return sequence_; }
void add_paramName(const SourceName &name) { paramNames_.emplace_back(name); }
void set_extends(const Symbol *extends) { extends_ = extends; }
void set_sequence(bool x = true) { sequence_ = x; }
private:
std::list<SourceName> paramNames_;
const Symbol *extends_{nullptr};
bool sequence_{false};
};
class ProcBindingDetails {
public:
ProcBindingDetails(const Symbol &symbol) : symbol_{&symbol} {}
const Symbol &symbol() const { return *symbol_; }
private:
const Symbol *symbol_; // procedure bound to
};
class GenericBindingDetails {
public:
GenericBindingDetails() {}
const SymbolList &specificProcs() const { return specificProcs_; }
void add_specificProc(const Symbol &proc) { specificProcs_.push_back(&proc); }
void add_specificProcs(const SymbolList &procs) {
specificProcs_.insert(specificProcs_.end(), procs.begin(), procs.end());
}
private:
SymbolList specificProcs_;
};
class FinalProcDetails {};
class MiscDetails {
public:
ENUM_CLASS(Kind, ConstructName, ScopeName);
MiscDetails(Kind kind) : kind_{kind} {}
Kind kind() const { return kind_; }
private:
Kind kind_;
};
class TypeParamDetails {
public:
TypeParamDetails(common::TypeParamAttr attr) : attr_{attr} {}
common::TypeParamAttr attr() const { return attr_; }
MaybeExpr &init() { return init_; }
const MaybeExpr &init() const { return init_; }
void set_init(MaybeExpr &&expr) { init_ = std::move(expr); }
const DeclTypeSpec *type() const { return type_; }
void set_type(const DeclTypeSpec &type) {
CHECK(!type_);
type_ = &type;
}
private:
common::TypeParamAttr attr_;
MaybeExpr init_;
const DeclTypeSpec *type_{nullptr};
};
// Record the USE of a symbol: location is where (USE statement or renaming);
// symbol is the USEd module.
class UseDetails {
public:
UseDetails(const SourceName &location, const Symbol &symbol)
: location_{location}, symbol_{&symbol} {}
const SourceName &location() const { return location_; }
const Symbol &symbol() const { return *symbol_; }
const Symbol &module() const;
private:
SourceName location_;
const Symbol *symbol_;
};
// A symbol with ambiguous use-associations. Record where they were so
// we can report the error if it is used.
class UseErrorDetails {
public:
UseErrorDetails(const UseDetails &);
UseErrorDetails &add_occurrence(const SourceName &, const Scope &);
using listType = std::list<std::pair<SourceName, const Scope *>>;
const listType occurrences() const { return occurrences_; };
private:
listType occurrences_;
};
// A symbol host-associated from an enclosing scope.
class HostAssocDetails {
public:
HostAssocDetails(const Symbol &symbol) : symbol_{&symbol} {}
const Symbol &symbol() const { return *symbol_; }
private:
const Symbol *symbol_;
};
class GenericDetails {
public:
GenericDetails() {}
GenericDetails(const SymbolList &specificProcs);
GenericDetails(Symbol *specific) : specific_{specific} {}
const SymbolList specificProcs() const { return specificProcs_; }
void add_specificProc(const Symbol &proc) { specificProcs_.push_back(&proc); }
Symbol *specific() { return specific_; }
void set_specific(Symbol &specific);
// Derived type with same name as generic, if any.
Symbol *derivedType() { return derivedType_; }
const Symbol *derivedType() const { return derivedType_; }
void set_derivedType(Symbol &derivedType);
// Check that specific is one of the specificProcs. If not, return the
// specific as a raw pointer.
const Symbol *CheckSpecific() const;
private:
// all of the specific procedures for this generic
SymbolList specificProcs_;
// a specific procedure with the same name as this generic, if any
Symbol *specific_{nullptr};
// a derived type with the same name as this generic, if any
Symbol *derivedType_{nullptr};
};
class UnknownDetails {};
using Details = std::variant<UnknownDetails, MainProgramDetails, ModuleDetails,
SubprogramDetails, SubprogramNameDetails, EntityDetails,
ObjectEntityDetails, ProcEntityDetails, DerivedTypeDetails, UseDetails,
UseErrorDetails, HostAssocDetails, GenericDetails, ProcBindingDetails,
GenericBindingDetails, FinalProcDetails, TypeParamDetails, MiscDetails>;
std::ostream &operator<<(std::ostream &, const Details &);
std::string DetailsToString(const Details &);
class Symbol {
public:
ENUM_CLASS(Flag,
Function, // symbol is a function
Subroutine, // symbol is a subroutine
Implicit, // symbol is implicitly typed
ModFile, // symbol came from .mod file
ParentComp, // symbol is the "parent component" of an extended type
LocalityLocal, // named in LOCAL locality-spec
LocalityLocalInit, // named in LOCAL_INIT locality-spec
LocalityShared // named in SHARED locality-spec
);
using Flags = common::EnumSet<Flag, Flag_enumSize>;
const Scope &owner() const { return *owner_; }
const SourceName &name() const { return name_; }
Attrs &attrs() { return attrs_; }
const Attrs &attrs() const { return attrs_; }
Flags &flags() { return flags_; }
const Flags &flags() const { return flags_; }
bool test(Flag flag) const { return flags_.test(flag); }
void set(Flag flag, bool value = true) { flags_.set(flag, value); }
// The Scope introduced by this symbol, if any.
Scope *scope() { return scope_; }
const Scope *scope() const { return scope_; }
void set_scope(Scope *scope) { scope_ = scope; }
// Does symbol have this type of details?
template<typename D> bool has() const {
return std::holds_alternative<D>(details_);
}
// Return a non-owning pointer to details if it is type D, else nullptr.
template<typename D> D *detailsIf() { return std::get_if<D>(&details_); }
template<typename D> const D *detailsIf() const {
return std::get_if<D>(&details_);
}
// Return a reference to the details which must be of type D.
template<typename D> D &get() {
return const_cast<D &>(static_cast<const Symbol *>(this)->get<D>());
}
template<typename D> const D &get() const {
if (const auto p{detailsIf<D>()}) {
return *p;
} else {
common::die("unexpected %s details at %s(%d)", GetDetailsName().c_str(),
__FILE__, __LINE__);
}
}
const Details &details() const { return details_; }
// Assign the details of the symbol from one of the variants.
// Only allowed in certain cases.
void set_details(Details &&);
// Can the details of this symbol be replaced with the given details?
bool CanReplaceDetails(const Details &details) const;
// Follow use-associations to get the ultimate entity.
Symbol &GetUltimate();
const Symbol &GetUltimate() const;
DeclTypeSpec *GetType();
const DeclTypeSpec *GetType() const;
void SetType(const DeclTypeSpec &);
bool IsSubprogram() const;
bool HasExplicitInterface() const;
bool IsSeparateModuleProc() const;
bool operator==(const Symbol &that) const { return this == &that; }
bool operator!=(const Symbol &that) const { return this != &that; }
int Rank() const;
private:
const Scope *owner_;
SourceName name_;
Attrs attrs_;
Flags flags_;
Scope *scope_{nullptr};
Details details_;
Symbol() {} // only created in class Symbols
const std::string GetDetailsName() const;
friend std::ostream &operator<<(std::ostream &, const Symbol &);
friend std::ostream &DumpForUnparse(std::ostream &, const Symbol &, bool);
template<std::size_t> friend class Symbols;
template<class, std::size_t> friend struct std::array;
};
std::ostream &operator<<(std::ostream &, Symbol::Flag);
// Manage memory for all symbols. BLOCK_SIZE symbols at a time are allocated.
// Make() returns a reference to the next available one. They are never
// deleted.
template<std::size_t BLOCK_SIZE> class Symbols {
public:
Symbol &Make(const Scope &owner, const SourceName &name, const Attrs &attrs,
Details &&details) {
Symbol &symbol = Get();
symbol.owner_ = &owner;
symbol.name_ = name;
symbol.attrs_ = attrs;
symbol.details_ = std::move(details);
return symbol;
}
private:
using blockType = std::array<Symbol, BLOCK_SIZE>;
std::list<blockType *> blocks_;
std::size_t nextIndex_{0};
blockType *currBlock_{nullptr};
Symbol &Get() {
if (nextIndex_ == 0) {
blocks_.push_back(new blockType());
currBlock_ = blocks_.back();
}
Symbol &result = (*currBlock_)[nextIndex_];
if (++nextIndex_ >= BLOCK_SIZE) {
nextIndex_ = 0; // allocate a new block next time
}
return result;
}
};
}
#endif // FORTRAN_SEMANTICS_SYMBOL_H_