llvm/mlir/lib/Conversion/ShapeToStandard/ShapeToStandard.cpp
Matthias Springer c0a6318d96 [mlir][tensor] Add tensor.dim operation
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.

Differential Revision: https://reviews.llvm.org/D105165
2021-07-01 10:00:19 +09:00

717 lines
26 KiB
C++

//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;
/// Conversion patterns.
namespace {
class AnyOpConversion : public OpConversionPattern<AnyOp> {
public:
using OpConversionPattern<AnyOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
AnyOpConversion::matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
AnyOp::Adaptor transformed(operands);
// Replace `any` with its first operand.
// Any operand would be a valid substitution.
rewriter.replaceOp(op, {transformed.inputs().front()});
return success();
}
namespace {
template <typename SrcOpTy, typename DstOpTy>
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
public:
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
LogicalResult
matchAndRewrite(SrcOpTy op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
typename SrcOpTy::Adaptor transformed(operands);
// For now, only error-free types are supported by this lowering.
if (op.getType().template isa<SizeType>())
return failure();
rewriter.replaceOpWithNewOp<DstOpTy>(op, transformed.lhs(),
transformed.rhs());
return success();
}
};
} // namespace
namespace {
struct BroadcastOpConverter : public OpConversionPattern<BroadcastOp> {
using OpConversionPattern<BroadcastOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(BroadcastOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
// Get the resulting extent in a given dimension. This is computed with any
// number of extent tensors and shifted offsets into them.
Value getBroadcastedDim(ImplicitLocOpBuilder lb, ValueRange extentTensors,
ValueRange rankDiffs, Value outputDimension) {
Value one = lb.create<ConstantIndexOp>(1);
Value broadcastedDim = one;
for (auto tup : llvm::zip(extentTensors, rankDiffs)) {
Value shape = std::get<0>(tup);
Value rankDiff = std::get<1>(tup);
Value outOfBounds =
lb.create<CmpIOp>(CmpIPredicate::ult, outputDimension, rankDiff);
Type indexTy = lb.getIndexType();
broadcastedDim =
lb.create<IfOp>(
TypeRange{indexTy}, outOfBounds,
[&](OpBuilder &b, Location loc) {
b.create<scf::YieldOp>(loc, broadcastedDim);
},
[&](OpBuilder &b, Location loc) {
// The broadcasting logic is:
// - if one extent (here we arbitrarily choose the
// extent from the greater-rank operand) is equal to 1,
// then take the extent from the other operand
// - otherwise, take the extent as-is.
// Note that this logic remains correct in the presence
// of dimensions of zero extent.
Value lesserRankOperandDimension =
b.create<SubIOp>(loc, indexTy, outputDimension, rankDiff);
Value lesserRankOperandExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{lesserRankOperandDimension});
Value dimIsOne = b.create<CmpIOp>(loc, CmpIPredicate::eq,
lesserRankOperandExtent, one);
Value dim = b.create<SelectOp>(loc, dimIsOne, broadcastedDim,
lesserRankOperandExtent);
b.create<scf::YieldOp>(loc, dim);
})
.getResult(0);
}
return broadcastedDim;
}
} // namespace
LogicalResult BroadcastOpConverter::matchAndRewrite(
BroadcastOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
if (op.getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
BroadcastOp::Adaptor transformed(operands);
Value zero = lb.create<ConstantIndexOp>(0);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(transformed.shapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater = lb.create<CmpIOp>(CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<SubIOp>(indexTy, maxRank, v);
}));
Value replacement = lb.create<tensor::GenerateOp>(
getExtentTensorType(lb.getContext()), ValueRange{maxRank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value broadcastedDim =
getBroadcastedDim(ImplicitLocOpBuilder(loc, b),
transformed.shapes(), rankDiffs, args[0]);
b.create<tensor::YieldOp>(loc, broadcastedDim);
});
if (replacement.getType() != op.getType())
replacement = lb.create<tensor::CastOp>(op.getType(), replacement);
rewriter.replaceOp(op, replacement);
return success();
}
namespace {
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
public:
using OpConversionPattern<ConstShapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstShapeOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstShapeOpConverter::matchAndRewrite(
ConstShapeOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only extent tensors, not `shape.shape`
// types.
if (op.getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
SmallVector<Value, 4> extentOperands;
for (auto extent : op.shape()) {
extentOperands.push_back(
rewriter.create<ConstantIndexOp>(loc, extent.getLimitedValue()));
}
Type indexTy = rewriter.getIndexType();
Value tensor =
rewriter.create<tensor::FromElementsOp>(loc, indexTy, extentOperands);
Type resultTy = RankedTensorType::get({ShapedType::kDynamicSize}, indexTy);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultTy, tensor);
return success();
}
namespace {
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
public:
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ConstSizeOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ConstSizeOpConversion::matchAndRewrite(
ConstSizeOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, op.value().getSExtValue());
return success();
}
namespace {
struct IsBroadcastableOpConverter
: public OpConversionPattern<IsBroadcastableOp> {
using OpConversionPattern<IsBroadcastableOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(IsBroadcastableOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult IsBroadcastableOpConverter::matchAndRewrite(
IsBroadcastableOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands, not
// on shapes.
IsBroadcastableOp::Adaptor transformed(operands);
if (!llvm::all_of(op.shapes(),
[](Value v) { return !v.getType().isa<ShapeType>(); }))
return failure();
auto loc = op.getLoc();
ImplicitLocOpBuilder lb(loc, rewriter);
Value zero = lb.create<ConstantIndexOp>(0);
Value one = lb.create<ConstantIndexOp>(1);
Type indexTy = lb.getIndexType();
// Save all the ranks for bounds checking. Because this is a tensor
// representing the shape extents, the rank is the extent of the only
// dimension in the tensor.
SmallVector<Value> ranks, rankDiffs;
llvm::append_range(ranks, llvm::map_range(transformed.shapes(), [&](Value v) {
return lb.create<tensor::DimOp>(v, zero);
}));
// Find the maximum rank
Value maxRank = ranks.front();
for (Value v : llvm::drop_begin(ranks, 1)) {
Value rankIsGreater = lb.create<CmpIOp>(CmpIPredicate::ugt, v, maxRank);
maxRank = lb.create<SelectOp>(rankIsGreater, v, maxRank);
}
// Calculate the difference of ranks and the maximum rank for later offsets.
llvm::append_range(rankDiffs, llvm::map_range(ranks, [&](Value v) {
return lb.create<SubIOp>(indexTy, maxRank, v);
}));
Type i1Ty = rewriter.getI1Type();
Value trueVal =
rewriter.create<ConstantOp>(loc, i1Ty, rewriter.getBoolAttr(true));
auto reduceResult = lb.create<ForOp>(
loc, zero, maxRank, one, ValueRange{trueVal},
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {
// Find a non-1 dim, if it exists. Note that the first part of this
// could reuse the Broadcast lowering entirely, but we redo the work
// here to make optimizations easier between the two loops.
Value broadcastedDim = getBroadcastedDim(
ImplicitLocOpBuilder(loc, b), transformed.shapes(), rankDiffs, iv);
Value broadcastable = iterArgs[0];
for (auto tup : llvm::zip(transformed.shapes(), rankDiffs)) {
Value shape, rankDiff;
std::tie(shape, rankDiff) = tup;
Value outOfBounds =
b.create<CmpIOp>(loc, CmpIPredicate::ult, iv, rankDiff);
broadcastable =
b.create<IfOp>(
loc, TypeRange{i1Ty}, outOfBounds,
[&](OpBuilder &b, Location loc) {
// Non existent dimensions are always broadcastable
b.create<scf::YieldOp>(loc, broadcastable);
},
[&](OpBuilder &b, Location loc) {
// Every value needs to be either 1, or the same non-1
// value to be broadcastable in this dim.
Value operandDimension =
b.create<SubIOp>(loc, indexTy, iv, rankDiff);
Value dimensionExtent = b.create<tensor::ExtractOp>(
loc, shape, ValueRange{operandDimension});
Value equalOne = b.create<CmpIOp>(loc, CmpIPredicate::eq,
dimensionExtent, one);
Value equalBroadcasted =
b.create<CmpIOp>(loc, CmpIPredicate::eq,
dimensionExtent, broadcastedDim);
Value result = b.create<AndOp>(
loc, broadcastable,
b.create<OrOp>(loc, equalOne, equalBroadcasted));
b.create<scf::YieldOp>(loc, result);
})
.getResult(0);
}
b.create<scf::YieldOp>(loc, broadcastable);
});
rewriter.replaceOp(op, reduceResult.results().front());
return success();
}
namespace {
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(GetExtentOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult GetExtentOpConverter::matchAndRewrite(
GetExtentOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
GetExtentOp::Adaptor transformed(operands);
// For now, only error-free types are supported by this lowering.
if (op.getType().isa<SizeType>())
return failure();
// Derive shape extent directly from shape origin if possible. This
// circumvents the necessity to materialize the shape in memory.
if (auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>()) {
if (shapeOfOp.arg().getType().isa<ShapedType>()) {
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, shapeOfOp.arg(),
transformed.dim());
return success();
}
}
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, rewriter.getIndexType(),
transformed.shape(),
ValueRange{transformed.dim()});
return success();
}
namespace {
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
public:
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
RankOpConverter::matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering supports only error-free types.
if (op.getType().isa<SizeType>())
return failure();
shape::RankOp::Adaptor transformed(operands);
rewriter.replaceOpWithNewOp<tensor::DimOp>(op, transformed.shape(), 0);
return success();
}
namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, this lowering is only defined on `tensor<?xindex>` operands.
if (op.shape().getType().isa<ShapeType>())
return failure();
auto loc = op.getLoc();
shape::ReduceOp::Adaptor transformed(operands);
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
Type indexTy = rewriter.getIndexType();
Value rank =
rewriter.create<tensor::DimOp>(loc, indexTy, transformed.shape(), zero);
auto loop = rewriter.create<scf::ForOp>(
loc, zero, rank, one, op.initVals(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
Value extent =
b.create<tensor::ExtractOp>(loc, transformed.shape(), iv);
SmallVector<Value, 2> mappedValues{iv, extent};
mappedValues.append(args.begin(), args.end());
BlockAndValueMapping mapping;
Block *reduceBody = op.getBody();
mapping.map(reduceBody->getArguments(), mappedValues);
for (auto &nested : reduceBody->without_terminator())
b.clone(nested, mapping);
SmallVector<Value, 2> mappedResults;
for (auto result : reduceBody->getTerminator()->getOperands())
mappedResults.push_back(mapping.lookup(result));
b.create<scf::YieldOp>(loc, mappedResults);
});
rewriter.replaceOp(op, loop.getResults());
return success();
}
namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
/// %c1 = constant 1 : index
/// %true = constant true
/// %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
/// %5 = tensor.extract %arg0[%arg2] : tensor<?xindex>
/// %6 = tensor.extract %arg1[%arg2] : tensor<?xindex>
/// %7 = cmpi "eq", %5, %6 : index
/// %8 = and %arg3, %7 : i1
/// scf.yield %8 : i1
/// }
/// scf.yield %4 : i1
/// } else {
/// %false = constant false
/// scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
using OpConversionPattern<ShapeEqOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(op.shapes(),
[](Value v) { return !v.getType().isa<ShapeType>(); }))
return failure();
Type i1Ty = rewriter.getI1Type();
if (op.shapes().size() <= 1) {
rewriter.replaceOpWithNewOp<ConstantOp>(op, i1Ty,
rewriter.getBoolAttr(true));
return success();
}
ShapeEqOp::Adaptor transformed(operands);
auto loc = op.getLoc();
Type indexTy = rewriter.getIndexType();
Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
Value firstShape = transformed.shapes().front();
Value firstRank =
rewriter.create<tensor::DimOp>(loc, indexTy, firstShape, zero);
Value result = nullptr;
// Generate a linear sequence of compares, all with firstShape as lhs.
for (Value shape : transformed.shapes().drop_front(1)) {
Value rank = rewriter.create<tensor::DimOp>(loc, indexTy, shape, zero);
Value eqRank =
rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, firstRank, rank);
auto same = rewriter.create<IfOp>(
loc, i1Ty, eqRank,
[&](OpBuilder &b, Location loc) {
Value one = b.create<ConstantIndexOp>(loc, 1);
Value init = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
auto loop = b.create<scf::ForOp>(
loc, zero, firstRank, one, ValueRange{init},
[&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
Value conj = args[0];
Value lhsExtent =
b.create<tensor::ExtractOp>(loc, firstShape, iv);
Value rhsExtent = b.create<tensor::ExtractOp>(loc, shape, iv);
Value eqExtent = b.create<CmpIOp>(loc, CmpIPredicate::eq,
lhsExtent, rhsExtent);
Value conjNext = b.create<AndOp>(loc, conj, eqExtent);
b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
});
b.create<scf::YieldOp>(loc, loop.getResults());
},
[&](OpBuilder &b, Location loc) {
Value result = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
b.create<scf::YieldOp>(loc, result);
});
result = !result ? same.getResult(0)
: rewriter.create<AndOp>(loc, result, same.getResult(0));
}
rewriter.replaceOp(op, result);
return success();
}
namespace {
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
public:
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ShapeOfOpConversion::matchAndRewrite(
ShapeOfOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// For now, only error-free types are supported by this lowering.
if (op.getType().isa<ShapeType>())
return failure();
// For ranked tensor arguments, lower to `tensor.from_elements`.
auto loc = op.getLoc();
ShapeOfOp::Adaptor transformed(operands);
Value tensor = transformed.arg();
Type tensorTy = tensor.getType();
if (tensorTy.isa<RankedTensorType>()) {
// Build values for individual extents.
SmallVector<Value, 8> extentValues;
RankedTensorType rankedTensorTy = tensorTy.cast<RankedTensorType>();
int64_t rank = rankedTensorTy.getRank();
for (int64_t i = 0; i < rank; i++) {
if (rankedTensorTy.isDynamicDim(i)) {
Value extent = rewriter.create<tensor::DimOp>(loc, tensor, i);
extentValues.push_back(extent);
} else {
Value extent =
rewriter.create<ConstantIndexOp>(loc, rankedTensorTy.getDimSize(i));
extentValues.push_back(extent);
}
}
// Materialize extent tensor.
Value staticExtentTensor = rewriter.create<tensor::FromElementsOp>(
loc, rewriter.getIndexType(), extentValues);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
staticExtentTensor);
return success();
}
// Lower to `tensor.generate` otherwise.
auto *ctx = rewriter.getContext();
Value rank = rewriter.create<mlir::RankOp>(loc, tensor);
rewriter.replaceOpWithNewOp<tensor::GenerateOp>(
op, getExtentTensorType(ctx), ValueRange{rank},
[&](OpBuilder &b, Location loc, ValueRange args) {
Value dim = args.front();
Value extent = b.create<tensor::DimOp>(loc, tensor, dim);
b.create<tensor::YieldOp>(loc, extent);
});
return success();
}
namespace {
class SplitAtOpConversion : public OpConversionPattern<SplitAtOp> {
public:
using OpConversionPattern<SplitAtOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SplitAtOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult SplitAtOpConversion::matchAndRewrite(
SplitAtOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
// Error conditions are not implemented, only lower if all operands and
// results are extent tensors.
if (llvm::any_of(ValueRange{op.operand(), op.head(), op.tail()},
[](Value v) { return v.getType().isa<ShapeType>(); }))
return failure();
SplitAtOp::Adaptor transformed(op);
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Value zero = b.create<ConstantIndexOp>(0);
Value rank = b.create<tensor::DimOp>(transformed.operand(), zero);
// index < 0 ? index + rank : index
Value originalIndex = transformed.index();
Value add = b.create<AddIOp>(originalIndex, rank);
Value indexIsNegative =
b.create<CmpIOp>(CmpIPredicate::slt, originalIndex, zero);
Value index = b.create<SelectOp>(indexIsNegative, add, originalIndex);
Value one = b.create<ConstantIndexOp>(1);
Value head =
b.create<tensor::ExtractSliceOp>(transformed.operand(), zero, index, one);
Value tailSize = b.create<SubIOp>(rank, index);
Value tail = b.create<tensor::ExtractSliceOp>(transformed.operand(), index,
tailSize, one);
rewriter.replaceOp(op, {head, tail});
return success();
}
namespace {
class ToExtentTensorOpConversion
: public OpConversionPattern<ToExtentTensorOp> {
public:
using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToExtentTensorOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
ToExtentTensorOpAdaptor adaptor(operands);
if (!adaptor.input().getType().isa<RankedTensorType>())
return rewriter.notifyMatchFailure(op, "input needs to be a tensor");
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
adaptor.input());
return success();
}
};
} // namespace
namespace {
/// Import the Shape Ops to Std Patterns.
#include "ShapeToStandard.cpp.inc"
} // namespace
namespace {
/// Conversion pass.
class ConvertShapeToStandardPass
: public ConvertShapeToStandardBase<ConvertShapeToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertShapeToStandardPass::runOnOperation() {
// Setup target legality.
MLIRContext &ctx = getContext();
ConversionTarget target(ctx);
target
.addLegalDialect<StandardOpsDialect, SCFDialect, tensor::TensorDialect>();
target.addLegalOp<CstrRequireOp, FuncOp, ModuleOp>();
// Setup conversion patterns.
RewritePatternSet patterns(&ctx);
populateShapeToStandardConversionPatterns(patterns);
// Apply conversion.
auto module = getOperation();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
void mlir::populateShapeToStandardConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
populateWithGenerated(patterns);
patterns.add<
AnyOpConversion,
BinaryOpConversion<AddOp, AddIOp>,
BinaryOpConversion<MulOp, MulIOp>,
BroadcastOpConverter,
ConstShapeOpConverter,
ConstSizeOpConversion,
IsBroadcastableOpConverter,
GetExtentOpConverter,
RankOpConverter,
ReduceOpConverter,
ShapeEqOpConverter,
ShapeOfOpConversion,
SplitAtOpConversion,
ToExtentTensorOpConversion>(patterns.getContext());
// clang-format on
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertShapeToStandardPass() {
return std::make_unique<ConvertShapeToStandardPass>();
}