Find a file
Mehdi Amini e7ab36f191 Change elided large constant syntax to make it more explicit
When the printer is requested to elide large constant, we emit an opaque
attribute instead. This patch fills the dialect name with
"elided_large_const" instead of "_" to remove some user confusion when
they later try to consume it.

Differential Revision: https://reviews.llvm.org/D117711
2022-01-19 20:41:42 +00:00
.github workflows: Make issue-subscriber more robust for labels with special characters 2022-01-14 22:04:54 -08:00
bolt [BOLT] Remove unreachable uncond branch after return 2022-01-19 22:06:26 +03:00
clang [openmp] Unconditionally set march commandline argument 2022-01-19 19:14:47 +00:00
clang-tools-extra [clang-tidy] Narrow cppguidelines-macro-usage to actual constants 2022-01-19 12:28:22 -07:00
cmake [doc][cmake] Convert read-me for the common CMake utils to reST 2022-01-10 21:36:11 +00:00
compiler-rt Fix broken comment in InstrProfData.inc 2022-01-19 10:38:13 -08:00
cross-project-tests [mlir] Finish removing Identifier from the C++ API 2022-01-12 11:58:23 -08:00
flang [flang] Prevent any non constant result extent to be inlined on caller side 2022-01-19 19:15:49 +01:00
libc [libc] improve error message for unsupported target platforms 2022-01-19 10:39:34 -08:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libcxx][test] Portably test that {w,}format_context is a specialization of basic_format_context 2022-01-19 11:36:29 -08:00
libcxxabi [libcxx][libcxxabi][libunwind][cmake] Use GNUInstallDirs to support custom installation dirs 2022-01-18 06:44:57 +00:00
libunwind [NFC][libunwind] Fix uintptr_t vs size_t confusion for lengths 2022-01-19 00:05:30 +00:00
lld [ELF] Fix split-stack caller with hidden non-split-stack callee 2022-01-19 12:25:01 -08:00
lldb [lldb] Initialize Python exactly once 2022-01-19 09:56:55 -08:00
llvm Fix build break introduced by D117147 2022-01-19 11:43:51 -08:00
mlir Change elided large constant syntax to make it more explicit 2022-01-19 20:41:42 +00:00
openmp [openmp][amdgpu] Remove xfail from test using declare target variable 2022-01-19 15:55:37 +00:00
polly [polly][cmake] Use GNUInstallDirs to support custom installation dirs 2022-01-18 20:33:42 +00:00
pstl [pstl][cmake] Use GNUInstallDirs to support custom installation dirs 2022-01-17 20:04:46 +00:00
runtimes [CMake] Use LLVM_COMMON_CMAKE_UTILS in runtimes just for clarity 2022-01-03 20:55:44 +00:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir][linalg][bufferize][NFC] Move analysis-related code to Comprehensive Bufferize 2022-01-19 22:25:36 +09:00
.arcconfig
.arclint
.clang-format
.clang-tidy Add IgnoreBaseInCopyConstructors to .clang-tidy 2022-01-03 13:41:32 -08:00
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Remove unused parallel-libs project 2021-10-21 14:34:39 -07:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, compiler-rt,cross-project-tests, flang, libc, libclc, libcxx, libcxxabi, libunwind, lld, lldb, mlir, openmp, polly, or pstl.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.