Find a file
Peter Klausler e5a4f730da [flang][runtime] OPEN write-only files
If a file being opened with no ACTION= is write-only then cope with
it rather than defaulting prematurely to treating it as read-only.

Differential Revision: https://reviews.llvm.org/D127015
2022-06-03 18:09:40 -07:00
.github
bolt [BOLT][NFC] Warning for deprecated option '-reorder-blocks=cache+' 2022-06-03 14:16:55 -07:00
clang [clang][test] Mark test arm-float-abi-lto.c unsupported on AIX 2022-06-03 21:04:56 -04:00
clang-tools-extra [pseudo] Add CLANG_PSEUDO_GEN cmake cache variable to avoid nested CMake invocation 2022-06-03 20:48:55 +02:00
cmake [CMake] Make FindLibEdit.cmake more robust 2022-05-27 13:06:45 -07:00
compiler-rt [MSAN] Exclude dn_expand test from Android. 2022-06-03 11:23:38 -07:00
cross-project-tests [lit] Fix setup of sanitizer environment 2022-05-19 19:24:16 -07:00
flang [flang][runtime] OPEN write-only files 2022-06-03 18:09:40 -07:00
libc [libc] Make expm1f correctly rounded when the targets have no FMA instructions. 2022-06-03 15:57:48 -04:00
libclc
libcxx [libc++][test] Skip string_view tests for other vendors on older modes 2022-06-03 13:51:49 -06:00
libcxxabi [libc++abi][AIX] add personality and helper functions for the state table EH 2022-05-31 09:21:34 -04:00
libunwind [NFC] [libunwind] turn assert into static_assert 2022-06-03 16:32:42 -07:00
lld [lld-macho] Addressed additional post-commit comments from D126046 2022-06-03 15:48:11 -04:00
lldb CommandObjectRegexCommand shouldn't put two commands on the history stack. 2022-06-03 11:34:53 -07:00
llvm [RISCV] Support LUI+ADDIW in doPeepholeLoadStoreADDI. 2022-06-03 18:06:56 -07:00
llvm-libgcc
mlir [mlir][sparse] Adding IsSparseTensorPred and updating ops to use it 2022-06-03 17:15:31 -07:00
openmp [OpenMP] allow loc to be NULL in __kmp_determine_reduction_method for MSVC 2022-06-03 14:11:39 -05:00
polly [IR] Enable opaque pointers by default 2022-06-02 09:40:56 +02:00
pstl [libc++] Use _LIBCPP_ASSERT by default for _PSTL_ASSERTions 2022-05-20 16:58:21 +02:00
runtimes [runtimes] Generalize how we reorder projects 2022-05-16 08:55:32 -04:00
third-party
utils [bazel] Update build for config.h.cmake change 2022-06-03 12:58:04 -07:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md
README.md
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.