llvm/mlir/test/EDSC/builder-api-test.cpp
Mehdi Amini e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00

1192 lines
48 KiB
C++

//===- builder-api-test.cpp - Tests for Declarative Builder APIs ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// RUN: mlir-edsc-builder-api-test | FileCheck %s
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "APITest.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
static MLIRContext &globalContext() {
static thread_local MLIRContext context(/*loadAllDialects=*/false);
static thread_local bool initOnce = [&]() {
// clang-format off
context.loadDialect<AffineDialect,
scf::SCFDialect,
linalg::LinalgDialect,
StandardOpsDialect,
vector::VectorDialect>();
// clang-format on
return true;
}();
(void)initOnce;
context.allowUnregisteredDialects();
return context;
}
static FuncOp makeFunction(StringRef name, ArrayRef<Type> results = {},
ArrayRef<Type> args = {}) {
auto &ctx = globalContext();
auto function = FuncOp::create(UnknownLoc::get(&ctx), name,
FunctionType::get(args, results, &ctx));
function.addEntryBlock();
return function;
}
TEST_FUNC(builder_dynamic_for_func_args) {
auto indexType = IndexType::get(&globalContext());
auto f32Type = FloatType::getF32(&globalContext());
auto f =
makeFunction("builder_dynamic_for_func_args", {}, {indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value lb(f.getArgument(0)), ub(f.getArgument(1));
Value f7(std_constant_float(llvm::APFloat(7.0f), f32Type));
Value f13(std_constant_float(llvm::APFloat(13.0f), f32Type));
Value i7(std_constant_int(7, 32));
Value i13(std_constant_int(13, 32));
affineLoopBuilder(lb, ub, 3, [&](Value i) {
using namespace edsc::op;
lb *std_constant_index(3) + ub;
lb + std_constant_index(3);
affineLoopBuilder(lb, ub, 2, [&](Value j) {
ceilDiv(std_constant_index(31) * floorDiv(i + j * std_constant_index(3),
std_constant_index(32)),
std_constant_index(32));
((f7 + f13) / f7) % f13 - f7 *f13;
((i7 + i13) / i7) % i13 - i7 *i13;
});
});
// clang-format off
// CHECK-LABEL: func @builder_dynamic_for_func_args(%{{.*}}: index, %{{.*}}: index) {
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 3 {
// CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 * 3)>()[%{{.*}}]
// CHECK: {{.*}} = affine.apply affine_map<()[s0, s1] -> (s1 + s0 * 3)>()[%{{.*}}, %{{.*}}]
// CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 + 3)>()[%{{.*}}]
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 2 {
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((d0 + d1 * 3) floordiv 32)>(%{{.*}}, %{{.*}})
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> (((d0 + d1 * 3) floordiv 32) * 31)>(%{{.*}}, %{{.*}})
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((((d0 + d1 * 3) floordiv 32) * 31) ceildiv 32)>(%{{.*}}, %{{.*}})
// CHECK-DAG: [[rf1:%[0-9]+]] = addf {{.*}}, {{.*}} : f32
// CHECK-DAG: [[rf2:%[0-9]+]] = divf [[rf1]], {{.*}} : f32
// CHECK-DAG: [[rf3:%[0-9]+]] = remf [[rf2]], {{.*}} : f32
// CHECK-DAG: [[rf4:%[0-9]+]] = mulf {{.*}}, {{.*}} : f32
// CHECK: {{.*}} = subf [[rf3]], [[rf4]] : f32
// CHECK-DAG: [[ri1:%[0-9]+]] = addi {{.*}}, {{.*}} : i32
// CHECK-DAG: [[ri2:%[0-9]+]] = divi_signed [[ri1]], {{.*}} : i32
// CHECK-DAG: [[ri3:%[0-9]+]] = remi_signed [[ri2]], {{.*}} : i32
// CHECK-DAG: [[ri4:%[0-9]+]] = muli {{.*}}, {{.*}} : i32
// CHECK: {{.*}} = subi [[ri3]], [[ri4]] : i32
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_dynamic_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_dynamic_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value i, a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
affineLoopBuilder(a - b, c + d, 2);
// clang-format off
// CHECK-LABEL: func @builder_dynamic_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>([[r0]]) to affine_map<(d0) -> (d0)>([[r1]]) step 2 {
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_loop_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_loop_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
loopNestBuilder(a - b, c + d, a);
// clang-format off
// CHECK-LABEL: func @builder_loop_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: scf.for %{{.*}} = [[r0]] to [[r1]] step {{.*}} {
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_max_min_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_max_min_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value lb1(f.getArgument(0)), lb2(f.getArgument(1)), ub1(f.getArgument(2)),
ub2(f.getArgument(3));
affineLoopBuilder({lb1, lb2}, {ub1, ub2}, 1);
std_ret();
// clang-format off
// CHECK-LABEL: func @builder_max_min_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK: affine.for %{{.*}} = max affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) {
// CHECK: return
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_block_append) {
using namespace edsc::op;
auto f = makeFunction("builder_blocks");
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Block *b =
buildInNewBlock(TypeRange(), [&](ValueRange) { std_constant_index(0); });
appendToBlock(b, [&](ValueRange) { std_constant_index(1); });
appendToBlock(b, [&](ValueRange) { std_ret(); });
// Get back to entry block and add a branch into "b".
appendToBlock(&f.front(), [&](ValueRange) { std_br(b, {}); });
// clang-format off
// CHECK-LABEL: @builder_blocks
// CHECK-NEXT: br ^bb1
// CHECK-NEXT: ^bb1: // pred: ^bb0
// CHECK-NEXT: constant 0 : index
// CHECK-NEXT: constant 1 : index
// CHECK-NEXT: return
// CHECK-NEXT: }
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_blocks) {
using namespace edsc::op;
auto f = makeFunction("builder_blocks");
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value c1(std_constant_int(42, 32)), c2(std_constant_int(1234, 32));
ReturnOp ret = std_ret();
Block *b1 = createBlock({c1.getType(), c1.getType()});
Block *b2 = buildInNewBlock({c1.getType(), c1.getType()},
[&](ValueRange args) { std_br(b1, args); });
// The insertion point within the toplevel function is now past b2, we will
// need to get back the entry block.
// This is what happens with unstructured control-flow.
appendToBlock(b1, [&](ValueRange args) {
Value r = args[0] + args[1];
std_br(b2, {args[0], r});
});
// Get back to entry block and add a branch into b1.
appendToBlock(&f.front(), [&](ValueRange) { std_br(b1, {c1, c2}); });
ret.erase();
// clang-format off
// CHECK-LABEL: @builder_blocks
// CHECK: %{{.*}} = constant 42 : i32
// CHECK-NEXT: %{{.*}} = constant 1234 : i32
// CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: ^bb1(%{{.*}}: i32, %{{.*}}: i32): // 2 preds: ^bb0, ^bb2
// CHECK-NEXT: %{{.*}} = addi %{{.*}}, %{{.*}} : i32
// CHECK-NEXT: br ^bb2(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: ^bb2(%{{.*}}: i32, %{{.*}}: i32): // pred: ^bb1
// CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: }
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_cond_branch) {
auto f = makeFunction("builder_cond_branch", {},
{IntegerType::get(1, &globalContext())});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value c32(std_constant_int(32, 32)), c64(std_constant_int(64, 64)),
c42(std_constant_int(42, 32));
ReturnOp ret = std_ret();
Block *b1 = buildInNewBlock(c32.getType(), [&](ValueRange) { std_ret(); });
Block *b2 = buildInNewBlock({c64.getType(), c32.getType()},
[&](ValueRange) { std_ret(); });
// Get back to entry block and add a conditional branch.
appendToBlock(&f.front(), [&](ValueRange args) {
std_cond_br(args[0], b1, {c32}, b2, {c64, c42});
});
ret.erase();
// clang-format off
// CHECK-LABEL: @builder_cond_branch
// CHECK: %{{.*}} = constant 32 : i32
// CHECK-NEXT: %{{.*}} = constant 64 : i64
// CHECK-NEXT: %{{.*}} = constant 42 : i32
// CHECK-NEXT: cond_br %{{.*}}, ^bb1(%{{.*}} : i32), ^bb2(%{{.*}}, %{{.*}} : i64, i32)
// CHECK-NEXT: ^bb1(%{{.*}}: i32): // pred: ^bb0
// CHECK-NEXT: return
// CHECK-NEXT: ^bb2(%{{.*}}: i64, %{{.*}}: i32): // pred: ^bb0
// CHECK-NEXT: return
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_helpers) {
using namespace edsc::op;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f =
makeFunction("builder_helpers", {}, {memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
// clang-format off
Value f7 = std_constant_float(llvm::APFloat(7.0f), f32Type);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1)),
vC(f.getArgument(2));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
Value lb0, lb1, lb2, ub0, ub1, ub2;
int64_t step0, step1, step2;
std::tie(lb0, ub0, step0) = vA.range(0);
std::tie(lb1, ub1, step1) = vA.range(1);
lb2 = vA.lb(2);
ub2 = vA.ub(2);
step2 = vA.step(2);
affineLoopNestBuilder({lb0, lb1}, {ub0, ub1}, {step0, step1}, [&](ValueRange ivs) {
Value i = ivs[0];
Value j = ivs[1];
affineLoopBuilder(lb2, ub2, step2, [&](Value k1){
C(i, j, k1) = f7 + A(i, j, k1) + B(i, j, k1);
});
affineLoopBuilder(lb2, ub2, step2, [&](Value k2){
C(i, j, k2) += A(i, j, k2) + B(i, j, k2);
});
});
// CHECK-LABEL: @builder_helpers
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-DAG: [[a:%.*]] = affine.load %arg0[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[b:%.*]] = addf {{.*}}, [[a]] : f32
// CHECK-DAG: [[c:%.*]] = affine.load %arg1[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[d:%.*]] = addf [[b]], [[c]] : f32
// CHECK-NEXT: affine.store [[d]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) {
// CHECK-DAG: [[a:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[b:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[c:%.*]] = addf [[b]], [[a]] : f32
// CHECK-DAG: [[d:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[e:%.*]] = addf [[d]], [[c]] : f32
// CHECK-NEXT: affine.store [[e]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(insertion_in_block) {
using namespace edsc::op;
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("insertion_in_block", {}, {indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
std_constant_int(0, 32);
buildInNewBlock({}, [&](ValueRange) { std_constant_int(1, 32); });
std_constant_int(2, 32);
// clang-format off
// CHECK-LABEL: @insertion_in_block
// CHECK: {{.*}} = constant 0 : i32
// CHECK: {{.*}} = constant 2 : i32
// CHECK: ^bb1: // no predecessors
// CHECK: {{.*}} = constant 1 : i32
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(zero_and_std_sign_extendi_op_i1_to_i8) {
using namespace edsc::op;
auto i1Type = IntegerType::get(1, &globalContext());
auto i8Type = IntegerType::get(8, &globalContext());
auto memrefType = MemRefType::get({}, i1Type, {}, 0);
auto f = makeFunction("zero_and_std_sign_extendi_op", {},
{memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
AffineIndexedValue A(f.getArgument(0));
AffineIndexedValue B(f.getArgument(1));
// clang-format off
edsc::intrinsics::std_zero_extendi(A, i8Type);
edsc::intrinsics::std_sign_extendi(B, i8Type);
// CHECK-LABEL: @zero_and_std_sign_extendi_op
// CHECK: %[[SRC1:.*]] = affine.load
// CHECK: zexti %[[SRC1]] : i1 to i8
// CHECK: %[[SRC2:.*]] = affine.load
// CHECK: sexti %[[SRC2]] : i1 to i8
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(operator_or) {
auto i1Type = IntegerType::get(/*width=*/1, &globalContext());
auto f = makeFunction("operator_or", {}, {i1Type, i1Type});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
using op::operator||;
Value lhs(f.getArgument(0));
Value rhs(f.getArgument(1));
lhs || rhs;
// CHECK-LABEL: @operator_or
// CHECK: [[ARG0:%.*]]: i1, [[ARG1:%.*]]: i1
// CHECK: or [[ARG0]], [[ARG1]]
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(operator_and) {
auto i1Type = IntegerType::get(/*width=*/1, &globalContext());
auto f = makeFunction("operator_and", {}, {i1Type, i1Type});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
using op::operator&&;
using op::negate;
Value lhs(f.getArgument(0));
Value rhs(f.getArgument(1));
negate(lhs && rhs);
// CHECK-LABEL: @operator_and
// CHECK: [[ARG0:%.*]]: i1, [[ARG1:%.*]]: i1
// CHECK: [[AND:%.*]] = and [[ARG0]], [[ARG1]]
// CHECK: [[TRUE:%.*]] = constant true
// CHECK: subi [[TRUE]], [[AND]] : i1
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(divis_op_i32) {
using namespace edsc::op;
auto f = makeFunction("divis_op", {}, {});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
auto i32Type = builder.getI32Type();
std_divis(std_constant_int(10, i32Type), std_constant_int(2, i32Type));
// clang-format off
// CHECK-LABEL: @divis_op
// CHECK-DAG: {{.*}} = constant 10
// CHECK-DAG: {{.*}} = constant 2
// CHECK-NEXT: {{.*}} = divi_signed
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(diviu_op_i32) {
using namespace edsc::op;
auto f = makeFunction("diviu_op", {}, {});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
auto i32Type = builder.getI32Type();
std_diviu(std_constant_int(10, i32Type), std_constant_int(2, i32Type));
// clang-format off
// CHECK-LABEL: @diviu_op
// CHECK-DAG: {{.*}} = constant 10
// CHECK-DAG: {{.*}} = constant 2
// CHECK-NEXT: {{.*}} = divi_unsigned
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(fpext_f32_f64) {
using namespace edsc::op;
auto f = makeFunction("fpext", {}, {});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
auto f32Type = builder.getF32Type();
auto f64Type = builder.getF64Type();
std_fpext(std_constant_float(llvm::APFloat(10.0f), f32Type), f64Type);
// clang-format off
// CHECK-LABEL: @fpext
// CHECK: {{.*}} = constant 1.0
// CHECK-NEXT: {{.*}} = fpext
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(fptrunc_f32_bf16) {
using namespace edsc::op;
auto f = makeFunction("fptrunc", {}, {});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
auto f32Type = builder.getF32Type();
auto bf16Type = builder.getBF16Type();
std_fptrunc(std_constant_float(llvm::APFloat(10.0f), f32Type), bf16Type);
// clang-format off
// CHECK-LABEL: @fptrunc
// CHECK: {{.*}} = constant 1.0
// CHECK-NEXT: {{.*}} = fptrunc
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(select_op_i32) {
using namespace edsc::op;
auto i32Type = IntegerType::get(32, &globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, i32Type, {}, 0);
auto f = makeFunction("select_op", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0), one = std_constant_index(1);
MemRefBoundsCapture vA(f.getArgument(0));
AffineIndexedValue A(f.getArgument(0));
affineLoopNestBuilder({zero, zero}, {one, one}, {1, 1}, [&](ValueRange ivs) {
using namespace edsc::op;
Value i = ivs[0], j = ivs[1];
std_select(eq(i, zero), A(zero, zero), A(i, j));
std_select(ne(i, zero), A(zero, zero), A(i, j));
std_select(slt(i, zero), A(zero, zero), A(i, j));
std_select(sle(i, zero), A(zero, zero), A(i, j));
std_select(sgt(i, zero), A(zero, zero), A(i, j));
std_select(sge(i, zero), A(zero, zero), A(i, j));
std_select(ult(i, zero), A(zero, zero), A(i, j));
std_select(ule(i, zero), A(zero, zero), A(i, j));
std_select(ugt(i, zero), A(zero, zero), A(i, j));
std_select(uge(i, zero), A(zero, zero), A(i, j));
});
// clang-format off
// CHECK-LABEL: @select_op
// CHECK: affine.for %{{.*}} = 0 to 1 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1 {
// CHECK-DAG: {{.*}} = cmpi "eq"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "ne"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "slt"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "sle"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "sgt"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "sge"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "ult"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "ule"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "ugt"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// CHECK-DAG: {{.*}} = cmpi "uge"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(select_op_f32) {
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("select_op", {}, {memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
// clang-format off
Value zero = std_constant_index(0), one = std_constant_index(1);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1));
affineLoopNestBuilder({zero, zero}, {one, one}, {1, 1}, [&](ValueRange ivs) {
using namespace edsc::op;
Value i = ivs[0], j = ivs[1];
std_select(eq(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(ne(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(sge(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(sle(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(slt(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(sgt(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(uge(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(ule(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(ult(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(ugt(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
});
// CHECK-LABEL: @select_op
// CHECK: affine.for %{{.*}} = 0 to 1 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1 {
// CHECK-DAG: cmpf "oeq"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "one"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "oge"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ole"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "olt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ogt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "oge"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ole"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "olt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ogt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Inject an EDSC-constructed computation to exercise imperfectly nested 2-d
// tiling.
TEST_FUNC(tile_2d) {
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize},
FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("tile_2d", {}, {memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1)),
vC(f.getArgument(2));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1)),
C(f.getArgument(2));
Value i, j, k1, k2;
Value M(vC.ub(0)), N(vC.ub(1)), O(vC.ub(2));
// clang-format off
using namespace edsc::op;
affineLoopNestBuilder({zero, zero}, {M, N}, {1, 1}, [&](ValueRange ivs) {
i = ivs[0];
j = ivs[1];
affineLoopBuilder(zero, O, 1, [&](Value k) {
k1 = k;
C(i, j, k1) = A(i, j, k1) + B(i, j, k1);
});
affineLoopBuilder(zero, O, 1, [&](Value k) {
k2 = k;
C(i, j, k2) = A(i, j, k2) + B(i, j, k2);
});
});
// clang-format on
auto li = getForInductionVarOwner(i), lj = getForInductionVarOwner(j),
lk1 = getForInductionVarOwner(k1), lk2 = getForInductionVarOwner(k2);
auto indicesL1 = mlir::tile({li, lj}, {512, 1024}, {lk1, lk2});
auto lii1 = indicesL1[0][0], ljj1 = indicesL1[1][0];
mlir::tile({ljj1, lii1}, {32, 16}, ljj1);
// clang-format off
// CHECK-LABEL: func @tile_2d
// CHECK: %[[ZERO:.*]] = constant 0 : index
// CHECK: %[[M:[0-9]+]] = dim %arg2, %c0{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: %[[N:[0-9]+]] = dim %arg2, %c1{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: %[[P:[0-9]+]] = dim %arg2, %c2{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[M]]) step 512 {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[N]]) step 1024 {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] step 16 {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] step 32 {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 1024, d1 + 32)>(%{{.*}}, %{{.*}})[%[[N]]] {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 512, d1 + 16)>(%{{.*}}, %{{.*}})[%[[M]]] {
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = addf {{.*}}, {{.*}} : f32
// CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] {
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}}= addf {{.*}}, {{.*}} : f32
// CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Exercise StdIndexedValue for loads and stores.
TEST_FUNC(indirect_access) {
using namespace edsc::op;
auto memrefType = MemRefType::get({ShapedType::kDynamicSize},
FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("indirect_access", {},
{memrefType, memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
MemRefBoundsCapture vC(f.getArgument(2));
AffineIndexedValue B(f.getArgument(1)), D(f.getArgument(3));
StdIndexedValue A(f.getArgument(0)), C(f.getArgument(2));
Value N(vC.ub(0));
// clang-format off
affineLoopBuilder(zero, N, 1, [&](Value i) {
C((Value)D(i)) = A((Value)B(i));
});
// clang-format on
// clang-format off
// CHECK-LABEL: func @indirect_access
// CHECK-SAME: (%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>, %[[ARG2:.*]]: memref<?xf32>, %[[ARG3:.*]]: memref<?xf32>)
// CHECK-DAG: [[B:%.*]] = affine.load %[[ARG1]]
// CHECK-DAG: [[D:%.*]] = affine.load %[[ARG3]]
// CHECK: load %{{.*}}{{\[}}[[B]]{{\]}}
// CHECK: store %{{.*}}, %{{.*}}{{\[}}[[D]]{{\]}}
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Exercise affine loads and stores build with empty maps.
TEST_FUNC(empty_map_load_store) {
using namespace edsc::op;
auto memrefType =
MemRefType::get({}, FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("empty_map_load_store", {},
{memrefType, memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
Value one = std_constant_index(1);
AffineIndexedValue input(f.getArgument(0)), res(f.getArgument(1));
// clang-format off
affineLoopBuilder(zero, one, 1, [&](Value) {
res() = input();
});
// clang-format on
// clang-format off
// CHECK-LABEL: func @empty_map_load_store(
// CHECK: [[A:%.*]] = affine.load %{{.*}}[]
// CHECK: affine.store [[A]], %{{.*}}[]
// clang-format on
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @affine_if_op
// CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}}
// CHECK-NOT: else
// CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}}
// CHECK-NEXT: } else {
// clang-format on
TEST_FUNC(affine_if_op) {
using namespace edsc::op;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("affine_if_op", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0), ten = std_constant_index(10);
SmallVector<bool, 4> isEq = {false, false, false, false};
SmallVector<AffineExpr, 4> affineExprs = {
builder.getAffineDimExpr(0), // d0 >= 0
builder.getAffineDimExpr(1), // d1 >= 0
builder.getAffineSymbolExpr(0), // s0 >= 0
builder.getAffineSymbolExpr(1) // s1 >= 0
};
auto intSet = IntegerSet::get(2, 2, affineExprs, isEq);
SmallVector<Value, 4> affineIfArgs = {zero, zero, ten, ten};
intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/false);
intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/true);
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_pointwise
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: addf
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: cmpf "ogt"
// CHECK: select
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// CHECK: linalg.generic {args_in = 1 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: tanh
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_pointwise_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("linalg_generic_pointwise", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
AffineExpr i, j;
bindDims(&globalContext(), i, j);
StructuredIndexed SA(A), SB(B), SC(C);
linalg_generic_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_max(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_tanh(SA({i, j}), SC({i, j}));
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_matmul
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]}
/// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_matmul_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("linalg_generic_matmul", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_matmul(f.getArguments());
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_conv_nhwc
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2 * 3 + d4 * 5, d3 * 4 + d5 * 6, d6)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2, d3, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]}
/// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?x?x?xf32>, memref<?x?x?x?xf32>, memref<?x?x?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_conv_nhwc) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize, ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f = makeFunction("linalg_generic_conv_nhwc", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_conv_nhwc(f.getArguments(),
/*strides=*/{3, 4}, /*dilations=*/{5, 6});
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_dilated_conv_nhwc
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3 * 3 + d5 * 5, d4 * 4 + d6 * 6, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3, d4, d1 + d2 * 7)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]}
// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?x?x?xf32>, memref<?x?x?x?xf32>, memref<?x?x?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_dilated_conv_nhwc) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize, ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f = makeFunction("linalg_generic_dilated_conv_nhwc", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_dilated_conv_nhwc(f.getArguments(),
/*depth_multiplier=*/7,
/*strides=*/{3, 4}, /*dilations=*/{5, 6});
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_metadata_ops
// CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<4x8x16xf32> into memref<32x16xf32>
// CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<32x16xf32> into memref<4x8x16xf32>
// clang-format on
TEST_FUNC(linalg_metadata_ops) {
using linalg::ReassociationExprs;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get({4, 8, 16}, f32Type, {}, 0);
auto f = makeFunction("linalg_metadata_ops", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
AffineExpr i, j, k;
bindDims(&globalContext(), i, j, k);
Value v(f.getArgument(0));
SmallVector<ReassociationExprs, 2> maps = {ReassociationExprs({i, j}),
ReassociationExprs({k})};
auto reshaped = linalg_reshape(v, maps);
linalg_reshape(memrefType, reshaped, maps);
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_tensors
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: addf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: cmpf "ogt"
// CHECK: select
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 1 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: tanh
// CHECK: }: tensor<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK: mulf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
// CHECK: mulf
// CHECK: addf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
// clang-format on
TEST_FUNC(linalg_tensors_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto tensorType = RankedTensorType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type);
auto f = makeFunction("linalg_tensors", {}, {tensorType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1));
AffineExpr i, j;
bindDims(&globalContext(), i, j);
StructuredIndexed SA(A), SB(B), SC(tensorType);
linalg_generic_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_max(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_tanh(SA({i, j}), SC({i, j}));
Value o1 = linalg_generic_matmul(A, B, tensorType)->getResult(0);
linalg_generic_matmul(A, B, o1, tensorType);
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(vector_extractelement_op_i32) {
using namespace edsc::op;
auto f = makeFunction("vector_extractelement_op", {}, {});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
auto i32Type = builder.getI32Type();
auto vectorType = VectorType::get(/*shape=*/{8}, i32Type);
vector_extractelement(
i32Type, std_constant(vectorType, builder.getI32VectorAttr({10})),
std_constant_int(0, i32Type));
// clang-format off
// CHECK-LABEL: @vector_extractelement_op
// CHECK-DAG: {{.*}} = constant dense<10>
// CHECK-DAG: {{.*}} = constant 0
// CHECK-NEXT: {{.*}} = vector.extractelement
// clang-format on
f.print(llvm::outs());
f.erase();
}
// CHECK-LABEL: func @memref_vector_matmul_test(
// CHECK-SAME: %[[A:.*]]: memref<?x?xvector<4x16xf32>>,
// CHECK-SAME: %[[B:.*]]: memref<?x?xvector<16x8xf32>>,
// CHECK-SAME: %[[C:.*]]: memref<?x?xvector<4x8xf32>>)
// CHECK: linalg.generic {{.*}} %[[A]], %[[B]], %[[C]]
// CHECK: vector.contract{{.*}}[affine_map<(d0, d1, d2) -> (d0,
// d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: {{.*}}["parallel", "parallel", "reduction"]
// CHECK-SAME: vector<4x16xf32>, vector<16x8xf32> into vector<4x8xf32>
// CHECK: memref<?x?xvector<4x16xf32>>, memref<?x?xvector<16x8xf32>>,
// CHECK-SAME: memref<?x?xvector<4x8xf32>>
TEST_FUNC(memref_vector_matmul_test) {
using namespace edsc;
using namespace edsc::ops;
int64_t M = 4, N = 8, K = 16;
auto f32Type = FloatType::getF32(&globalContext());
auto mkVectorType = VectorType::get({M, K}, f32Type);
auto knVectorType = VectorType::get({K, N}, f32Type);
auto mnVectorType = VectorType::get({M, N}, f32Type);
auto typeA =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
mkVectorType, {}, 0);
auto typeB =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
knVectorType, {}, 0);
auto typeC =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
mnVectorType, {}, 0);
auto f = makeFunction("memref_vector_matmul_test", {}, {typeA, typeB, typeC});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
auto contractionBuilder = [](ValueRange args) {
assert(args.size() == 3 && "expected 3 block arguments");
(linalg_yield(vector_contraction_matmul(args[0], args[1], args[2])));
};
linalg_generic_matmul(A, B, C, contractionBuilder);
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_loop_for_yield) {
auto indexType = IndexType::get(&globalContext());
auto f32Type = FloatType::getF32(&globalContext());
auto f = makeFunction("builder_loop_for_yield", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value init0 = std_constant_float(llvm::APFloat(1.0f), f32Type);
Value init1 = std_constant_float(llvm::APFloat(2.0f), f32Type);
Value a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
auto results = loopNestBuilder(a - b, c + d, a, {init0, init1},
[&](Value iv, ValueRange args) {
Value sum = args[0] + args[1];
return scf::ValueVector{args[1], sum};
});
results[0] + results[1];
// clang-format off
// CHECK-LABEL: func @builder_loop_for_yield(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK: [[init0:%.*]] = constant
// CHECK: [[init1:%.*]] = constant
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: [[res:%[0-9]+]]:2 = scf.for %{{.*}} = [[r0]] to [[r1]] step {{.*}} iter_args([[arg0:%.*]] = [[init0]], [[arg1:%.*]] = [[init1]]) -> (f32, f32) {
// CHECK: [[sum:%[0-9]+]] = addf [[arg0]], [[arg1]] : f32
// CHECK: scf.yield [[arg1]], [[sum]] : f32, f32
// CHECK: addf [[res]]#0, [[res]]#1 : f32
// clang-format on
f.print(llvm::outs());
f.erase();
}
int main() {
RUN_TESTS();
return 0;
}