llvm/flang/lib/evaluate/characteristics.cc
2019-07-16 09:58:51 -07:00

761 lines
26 KiB
C++

// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "characteristics.h"
#include "intrinsics.h"
#include "tools.h"
#include "type.h"
#include "../common/indirection.h"
#include "../parser/message.h"
#include "../semantics/symbol.h"
#include <initializer_list>
#include <ostream>
using namespace Fortran::parser::literals;
namespace Fortran::evaluate::characteristics {
// Copy attributes from a symbol to dst based on the mapping in pairs.
template<typename A, typename B>
static void CopyAttrs(const semantics::Symbol &src, A &dst,
const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) {
for (const auto &pair : pairs) {
if (src.attrs().test(pair.first)) {
dst.attrs.set(pair.second);
}
}
}
bool TypeAndShape::operator==(const TypeAndShape &that) const {
return type_ == that.type_ && shape_ == that.shape_ &&
isAssumedRank_ == that.isAssumedRank_;
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::Symbol &symbol) {
return std::visit(
common::visitors{
[&](const semantics::ObjectEntityDetails &object) {
return Characterize(object);
},
[&](const semantics::ProcEntityDetails &proc) {
const semantics::ProcInterface &interface{proc.interface()};
if (interface.type()) {
return Characterize(*interface.type());
} else {
return Characterize(*interface.symbol());
}
},
[&](const semantics::UseDetails &use) {
return Characterize(use.symbol());
},
[&](const semantics::HostAssocDetails &assoc) {
return Characterize(assoc.symbol());
},
[](const auto &) -> std::optional<TypeAndShape> {
return std::nullopt;
},
},
symbol.details());
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::ObjectEntityDetails &object) {
if (auto type{DynamicType::From(object.type())}) {
TypeAndShape result{std::move(*type)};
result.AcquireShape(object);
return result;
} else {
return std::nullopt;
}
}
std::optional<TypeAndShape> TypeAndShape::Characterize(
const semantics::DeclTypeSpec &spec) {
if (auto type{DynamicType::From(spec)}) {
return TypeAndShape{std::move(*type)};
} else {
return std::nullopt;
}
}
bool TypeAndShape::IsCompatibleWith(
parser::ContextualMessages &messages, const TypeAndShape &that) const {
if (!type_.IsTypeCompatibleWith(that.type_)) {
messages.Say("Target type '%s' is not compatible with '%s'"_err_en_US,
that.type_.AsFortran(), type_.AsFortran());
return false;
}
return CheckConformance(messages, shape_, that.shape_);
}
void TypeAndShape::AcquireShape(const semantics::ObjectEntityDetails &object) {
CHECK(shape_.empty() && !isAssumedRank_);
if (object.IsAssumedRank()) {
isAssumedRank_ = true;
return;
}
for (const semantics::ShapeSpec &dim : object.shape()) {
if (dim.ubound().GetExplicit().has_value()) {
Expr<SubscriptInteger> extent{*dim.ubound().GetExplicit()};
if (dim.lbound().GetExplicit().has_value()) {
extent = std::move(extent) +
common::Clone(*dim.lbound().GetExplicit()) -
Expr<SubscriptInteger>{1};
}
shape_.emplace_back(std::move(extent));
} else {
shape_.push_back(std::nullopt);
}
}
}
std::ostream &TypeAndShape::Dump(std::ostream &o) const {
o << type_.AsFortran();
if (!shape_.empty()) {
o << " dimension(";
char sep{'('};
for (const auto &expr : shape_) {
o << sep;
sep = ',';
if (expr.has_value()) {
expr->AsFortran(o);
} else {
o << ':';
}
}
o << ')';
} else if (isAssumedRank_) {
o << " dimension(*)";
}
return o;
}
bool DummyDataObject::operator==(const DummyDataObject &that) const {
return type == that.type && attrs == that.attrs && intent == that.intent &&
coshape == that.coshape;
}
std::optional<DummyDataObject> DummyDataObject::Characterize(
const semantics::Symbol &symbol) {
if (const auto *obj{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
if (auto type{TypeAndShape::Characterize(*obj)}) {
DummyDataObject result{*type};
using semantics::Attr;
CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, result,
{
{Attr::OPTIONAL, DummyDataObject::Attr::Optional},
{Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable},
{Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous},
{Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous},
{Attr::VALUE, DummyDataObject::Attr::Value},
{Attr::VOLATILE, DummyDataObject::Attr::Volatile},
{Attr::POINTER, DummyDataObject::Attr::Pointer},
{Attr::TARGET, DummyDataObject::Attr::Target},
});
if (symbol.attrs().test(semantics::Attr::INTENT_IN)) {
result.intent = common::Intent::In;
}
if (symbol.attrs().test(semantics::Attr::INTENT_OUT)) {
CHECK(result.intent == common::Intent::Default);
result.intent = common::Intent::Out;
}
if (symbol.attrs().test(semantics::Attr::INTENT_INOUT)) {
CHECK(result.intent == common::Intent::Default);
result.intent = common::Intent::InOut;
}
// TODO: acquire coshape when symbol table represents it
return result;
}
}
return std::nullopt;
}
std::ostream &DummyDataObject::Dump(std::ostream &o) const {
attrs.Dump(o, EnumToString);
if (intent != common::Intent::Default) {
o << "INTENT(" << common::EnumToString(intent) << ')';
}
type.Dump(o);
if (!coshape.empty()) {
char sep{'['};
for (const auto &expr : coshape) {
expr.AsFortran(o << sep);
sep = ',';
}
}
return o;
}
DummyProcedure::DummyProcedure(Procedure &&p)
: procedure{new Procedure{std::move(p)}} {}
bool DummyProcedure::operator==(const DummyProcedure &that) const {
return attrs == that.attrs && procedure.value() == that.procedure.value();
}
std::optional<DummyProcedure> DummyProcedure::Characterize(
const semantics::Symbol &symbol, const IntrinsicProcTable &intrinsics) {
if (auto procedure{Procedure::Characterize(symbol, intrinsics)}) {
DummyProcedure result{std::move(procedure.value())};
CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result,
{
{semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional},
{semantics::Attr::POINTER, DummyProcedure::Attr::Pointer},
});
return result;
} else {
return std::nullopt;
}
}
std::ostream &DummyProcedure::Dump(std::ostream &o) const {
attrs.Dump(o, EnumToString);
procedure.value().Dump(o);
return o;
}
std::ostream &AlternateReturn::Dump(std::ostream &o) const { return o << '*'; }
bool DummyArgument::operator==(const DummyArgument &that) const {
return u == that.u;
}
std::optional<DummyArgument> DummyArgument::Characterize(
const semantics::Symbol &symbol, const IntrinsicProcTable &intrinsics) {
auto name{symbol.name().ToString()};
if (symbol.has<semantics::ObjectEntityDetails>()) {
if (auto obj{DummyDataObject::Characterize(symbol)}) {
return DummyArgument{std::move(name), std::move(obj.value())};
}
} else if (auto proc{DummyProcedure::Characterize(symbol, intrinsics)}) {
return DummyArgument{std::move(name), std::move(proc.value())};
}
return std::nullopt;
}
bool DummyArgument::IsOptional() const {
return std::visit(
common::visitors{
[](const DummyDataObject &data) {
return data.attrs.test(DummyDataObject::Attr::Optional);
},
[](const DummyProcedure &proc) {
return proc.attrs.test(DummyProcedure::Attr::Optional);
},
[](const AlternateReturn &) { return false; },
},
u);
}
void DummyArgument::SetOptional(bool value) {
std::visit(
common::visitors{
[value](DummyDataObject &data) {
data.attrs.set(DummyDataObject::Attr::Optional, value);
},
[value](DummyProcedure &proc) {
proc.attrs.set(DummyProcedure::Attr::Optional, value);
},
[](AlternateReturn &) { DIE("cannot set optional"); },
},
u);
}
std::ostream &DummyArgument::Dump(std::ostream &o) const {
if (!name.empty()) {
o << name << '=';
}
if (pass) {
o << " PASS";
}
std::visit([&](const auto &x) { x.Dump(o); }, u);
return o;
}
FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {}
FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {}
FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {}
FunctionResult::~FunctionResult() = default;
bool FunctionResult::operator==(const FunctionResult &that) const {
return attrs == that.attrs && u == that.u;
}
std::optional<FunctionResult> FunctionResult::Characterize(
const Symbol &symbol, const IntrinsicProcTable &intrinsics) {
if (const auto *obj{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
if (auto type{TypeAndShape::Characterize(*obj)}) {
FunctionResult result{std::move(*type)};
CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result,
{
{semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable},
{semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous},
{semantics::Attr::POINTER, FunctionResult::Attr::Pointer},
});
return result;
}
} else if (auto maybeProc{Procedure::Characterize(symbol, intrinsics)}) {
FunctionResult result{std::move(*maybeProc)};
result.attrs.set(FunctionResult::Attr::Pointer);
return result;
}
return std::nullopt;
}
bool FunctionResult::IsAssumedLengthCharacter() const {
if (const auto *ts{std::get_if<TypeAndShape>(&u)}) {
return ts->type().IsAssumedLengthCharacter();
} else {
return false;
}
}
std::ostream &FunctionResult::Dump(std::ostream &o) const {
attrs.Dump(o, EnumToString);
std::visit(
common::visitors{
[&](const TypeAndShape &ts) { ts.Dump(o); },
[&](const CopyableIndirection<Procedure> &p) {
p.value().Dump(o << " procedure(") << ')';
},
},
u);
return o;
}
Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a)
: functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} {}
Procedure::Procedure(DummyArguments &&args, Attrs a)
: dummyArguments{std::move(args)}, attrs{a} {}
bool Procedure::operator==(const Procedure &that) const {
return attrs == that.attrs && dummyArguments == that.dummyArguments &&
functionResult == that.functionResult;
}
std::optional<Procedure> Procedure::Characterize(
const semantics::Symbol &symbol, const IntrinsicProcTable &intrinsics) {
Procedure result;
CopyAttrs<Procedure, Procedure::Attr>(symbol, result,
{
{semantics::Attr::PURE, Procedure::Attr::Pure},
{semantics::Attr::ELEMENTAL, Procedure::Attr::Elemental},
{semantics::Attr::BIND_C, Procedure::Attr::BindC},
});
return std::visit(
common::visitors{
[&](const semantics::SubprogramDetails &subp)
-> std::optional<Procedure> {
if (subp.isFunction()) {
auto fr{FunctionResult::Characterize(subp.result(), intrinsics)};
if (!fr) {
return std::nullopt;
}
result.functionResult = std::move(fr);
}
for (const semantics::Symbol *arg : subp.dummyArgs()) {
if (arg == nullptr) {
result.dummyArguments.emplace_back(AlternateReturn{});
} else if (auto argCharacteristics{
DummyArgument::Characterize(*arg, intrinsics)}) {
result.dummyArguments.emplace_back(
std::move(argCharacteristics.value()));
} else {
return std::nullopt;
}
}
return result;
},
[&](const semantics::ProcEntityDetails &proc)
-> std::optional<Procedure> {
if (symbol.attrs().test(semantics::Attr::INTRINSIC)) {
return intrinsics.IsUnrestrictedSpecificIntrinsicFunction(
symbol.name().ToString());
}
const semantics::ProcInterface &interface{proc.interface()};
if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) {
auto characterized{Characterize(*interfaceSymbol, intrinsics)};
if (!characterized) {
return std::nullopt;
}
result = *characterized;
} else {
result.attrs.set(Procedure::Attr::ImplicitInterface);
if (symbol.test(semantics::Symbol::Flag::Function)) {
const semantics::DeclTypeSpec *type{interface.type()};
if (!type) {
return std::nullopt;
}
auto resultType{DynamicType::From(*type)};
if (!resultType) {
return std::nullopt;
}
result.functionResult = FunctionResult{*resultType};
} else {
// subroutine, not function
if (interface.type() != nullptr) {
return std::nullopt;
}
}
}
// The PASS name, if any, is not a characteristic.
return result;
},
[&](const semantics::ProcBindingDetails &binding) {
auto result{Characterize(binding.symbol(), intrinsics)};
if (result) {
if (const auto passIndex{binding.passIndex()}) {
auto &passArg{result->dummyArguments.at(*passIndex)};
passArg.pass = true;
if (const auto *passName{binding.passName()}) {
CHECK(passArg.name == passName->ToString());
}
}
}
return result;
},
[&](const semantics::UseDetails &use) {
return Characterize(use.symbol(), intrinsics);
},
[&](const semantics::HostAssocDetails &assoc) {
return Characterize(assoc.symbol(), intrinsics);
},
[](const auto &) -> std::optional<Procedure> { return std::nullopt; },
},
symbol.details());
}
std::ostream &Procedure::Dump(std::ostream &o) const {
attrs.Dump(o, EnumToString);
if (functionResult.has_value()) {
functionResult->Dump(o << "TYPE(") << ") FUNCTION";
} else {
o << "SUBROUTINE";
}
char sep{'('};
for (const auto &dummy : dummyArguments) {
dummy.Dump(o << sep);
sep = ',';
}
return o << (sep == '(' ? "()" : ")");
}
// Utility class to determine if Procedures, etc. are distinguishable
class DistinguishUtils {
public:
// Are these procedures distinguishable for a generic name?
static bool Distinguishable(const Procedure &, const Procedure &);
// Are these procedures distinguishable for a generic operator or assignment?
static bool DistinguishableOpOrAssign(const Procedure &, const Procedure &);
private:
struct CountDummyProcedures {
CountDummyProcedures(const DummyArguments &args) {
for (const DummyArgument &arg : args) {
if (std::holds_alternative<DummyProcedure>(arg.u)) {
total += 1;
notOptional += !arg.IsOptional();
}
}
}
int total{0};
int notOptional{0};
};
static bool Rule3Distinguishable(const Procedure &, const Procedure &);
static const DummyArgument *Rule1DistinguishingArg(
const DummyArguments &, const DummyArguments &);
static int FindFirstToDistinguishByPosition(
const DummyArguments &, const DummyArguments &);
static int FindLastToDistinguishByName(
const DummyArguments &, const DummyArguments &);
static int CountCompatibleWith(const DummyArgument &, const DummyArguments &);
static int CountNotDistinguishableFrom(
const DummyArgument &, const DummyArguments &);
static bool Distinguishable(const DummyArgument &, const DummyArgument &);
static bool Distinguishable(const DummyDataObject &, const DummyDataObject &);
static bool Distinguishable(const DummyProcedure &, const DummyProcedure &);
static bool Distinguishable(const FunctionResult &, const FunctionResult &);
static bool Distinguishable(const TypeAndShape &, const TypeAndShape &);
static bool IsTkrCompatible(const DummyArgument &, const DummyArgument &);
static bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &);
static const DummyArgument *GetAtEffectivePosition(
const DummyArguments &, int);
static const DummyArgument *GetPassArg(const Procedure &);
};
// Simpler distinguishability rules for operators and assignment
bool DistinguishUtils::DistinguishableOpOrAssign(
const Procedure &proc1, const Procedure &proc2) {
auto &args1{proc1.dummyArguments};
auto &args2{proc2.dummyArguments};
if (args1.size() != args2.size()) {
return true; // C1511: distinguishable based on number of arguments
}
for (std::size_t i{0}; i < args1.size(); ++i) {
if (Distinguishable(args1[i], args2[i])) {
return true; // C1511, C1512: distinguishable based on this arg
}
}
return false;
}
bool DistinguishUtils::Distinguishable(
const Procedure &proc1, const Procedure &proc2) {
auto &args1{proc1.dummyArguments};
auto &args2{proc2.dummyArguments};
auto count1{CountDummyProcedures(args1)};
auto count2{CountDummyProcedures(args2)};
if (count1.notOptional > count2.total || count2.notOptional > count1.total) {
return true; // distinguishable based on C1514 rule 2
}
if (Rule3Distinguishable(proc1, proc2)) {
return true; // distinguishable based on C1514 rule 3
}
if (Rule1DistinguishingArg(args1, args2)) {
return true; // distinguishable based on C1514 rule 1
}
int pos1{FindFirstToDistinguishByPosition(args1, args2)};
int name1{FindLastToDistinguishByName(args1, args2)};
if (pos1 >= 0 && pos1 <= name1) {
return true; // distinguishable based on C1514 rule 4
}
int pos2{FindFirstToDistinguishByPosition(args2, args1)};
int name2{FindLastToDistinguishByName(args2, args1)};
if (pos2 >= 0 && pos2 <= name2) {
return true; // distinguishable based on C1514 rule 4
}
return false;
}
// C1514 rule 3: Procedures are distinguishable if both have a passed-object
// dummy argument and those are distinguishable.
bool DistinguishUtils::Rule3Distinguishable(
const Procedure &proc1, const Procedure &proc2) {
const DummyArgument *pass1{GetPassArg(proc1)};
const DummyArgument *pass2{GetPassArg(proc2)};
return pass1 && pass2 && Distinguishable(*pass1, *pass2);
}
// Find a non-passed-object dummy data object in one of the argument lists
// that satisfies C1514 rule 1. I.e. x such that:
// - m is the number of dummy data objects in one that are nonoptional,
// are not passed-object, that x is TKR compatible with
// - n is the number of non-passed-object dummy data objects, in the other
// that are not distinguishable from x
// - m is greater than n
const DummyArgument *DistinguishUtils::Rule1DistinguishingArg(
const DummyArguments &args1, const DummyArguments &args2) {
auto size1{args1.size()};
auto size2{args2.size()};
for (std::size_t i{0}; i < size1 + size2; ++i) {
const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]};
if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) {
if (CountCompatibleWith(x, args1) >
CountNotDistinguishableFrom(x, args2) ||
CountCompatibleWith(x, args2) >
CountNotDistinguishableFrom(x, args1)) {
return &x;
}
}
}
return nullptr;
}
// Find the index of the first nonoptional non-passed-object dummy argument
// in args1 at an effective position such that either:
// - args2 has no dummy argument at that effective position
// - the dummy argument at that position is distinguishable from it
int DistinguishUtils::FindFirstToDistinguishByPosition(
const DummyArguments &args1, const DummyArguments &args2) {
int effective{0}; // position of arg1 in list, ignoring passed arg
for (std::size_t i{0}; i < args1.size(); ++i) {
const DummyArgument &arg1{args1.at(i)};
if (!arg1.pass && !arg1.IsOptional()) {
const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)};
if (!arg2 || Distinguishable(arg1, *arg2)) {
return i;
}
}
effective += !arg1.pass;
}
return -1;
}
// Find the index of the last nonoptional non-passed-object dummy argument
// in args1 whose name is such that either:
// - args2 has no dummy argument with that name
// - the dummy argument with that name is distinguishable from it
int DistinguishUtils::FindLastToDistinguishByName(
const DummyArguments &args1, const DummyArguments &args2) {
std::map<std::string, const DummyArgument *> nameToArg;
for (const auto &arg2 : args2) {
nameToArg.emplace(arg2.name, &arg2);
}
for (int i = args1.size() - 1; i >= 0; --i) {
const DummyArgument &arg1{args1.at(i)};
if (!arg1.pass && !arg1.IsOptional()) {
auto it{nameToArg.find(arg1.name)};
if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) {
return i;
}
}
}
return -1;
}
// Count the dummy data objects in args that are nonoptional, are not
// passed-object, and that x is TKR compatible with
int DistinguishUtils::CountCompatibleWith(
const DummyArgument &x, const DummyArguments &args) {
return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y);
});
}
// Return the number of dummy data objects in args that are not
// distinguishable from x and not passed-object.
int DistinguishUtils::CountNotDistinguishableFrom(
const DummyArgument &x, const DummyArguments &args) {
return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) {
return !y.pass && std::holds_alternative<DummyDataObject>(y.u) &&
!Distinguishable(y, x);
});
}
bool DistinguishUtils::Distinguishable(
const DummyArgument &x, const DummyArgument &y) {
if (x.u.index() != y.u.index()) {
return true; // different kind: data/proc/alt-return
}
return std::visit(
common::visitors{
[&](const DummyDataObject &z) {
return Distinguishable(z, std::get<DummyDataObject>(y.u));
},
[&](const DummyProcedure &z) {
return Distinguishable(z, std::get<DummyProcedure>(y.u));
},
[&](const AlternateReturn &) { return false; },
},
x.u);
}
bool DistinguishUtils::Distinguishable(
const DummyDataObject &x, const DummyDataObject &y) {
using Attr = DummyDataObject::Attr;
if (Distinguishable(x.type, y.type)) {
return true;
} else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) &&
y.intent != common::Intent::In) {
return true;
} else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) &&
x.intent != common::Intent::In) {
return true;
} else {
return false;
}
}
bool DistinguishUtils::Distinguishable(
const DummyProcedure &x, const DummyProcedure &y) {
const Procedure &xProc{x.procedure.value()};
const Procedure &yProc{y.procedure.value()};
if (Distinguishable(xProc, yProc)) {
return true;
} else {
const std::optional<FunctionResult> &xResult{xProc.functionResult};
const std::optional<FunctionResult> &yResult{yProc.functionResult};
return xResult ? !yResult || Distinguishable(*xResult, *yResult)
: yResult.has_value();
}
}
bool DistinguishUtils::Distinguishable(
const FunctionResult &x, const FunctionResult &y) {
if (x.u.index() != y.u.index()) {
return true; // one is data object, one is procedure
}
return std::visit(
common::visitors{
[&](const TypeAndShape &z) {
return Distinguishable(z, std::get<TypeAndShape>(y.u));
},
[&](const CopyableIndirection<Procedure> &z) {
return Distinguishable(z.value(),
std::get<CopyableIndirection<Procedure>>(y.u).value());
},
},
x.u);
}
bool DistinguishUtils::Distinguishable(
const TypeAndShape &x, const TypeAndShape &y) {
return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x);
}
// Compatibility based on type, kind, and rank
bool DistinguishUtils::IsTkrCompatible(
const DummyArgument &x, const DummyArgument &y) {
const auto *obj1{std::get_if<DummyDataObject>(&x.u)};
const auto *obj2{std::get_if<DummyDataObject>(&y.u)};
return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type);
}
bool DistinguishUtils::IsTkrCompatible(
const TypeAndShape &x, const TypeAndShape &y) {
return x.type().IsTkCompatibleWith(y.type()) &&
(x.IsAssumedRank() || y.IsAssumedRank() || x.Rank() == y.Rank());
}
// Return the argument at the given index, ignoring the passed arg
const DummyArgument *DistinguishUtils::GetAtEffectivePosition(
const DummyArguments &args, int index) {
for (const DummyArgument &arg : args) {
if (!arg.pass) {
if (index == 0) {
return &arg;
}
--index;
}
}
return nullptr;
}
// Return the passed-object dummy argument of this procedure, if any
const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) {
for (const auto &arg : proc.dummyArguments) {
if (arg.pass) {
return &arg;
}
}
return nullptr;
}
bool Distinguishable(const Procedure &x, const Procedure &y) {
return DistinguishUtils::Distinguishable(x, y);
}
bool DistinguishableOpOrAssign(const Procedure &x, const Procedure &y) {
return DistinguishUtils::DistinguishableOpOrAssign(x, y);
}
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult)
DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure)
}
template class Fortran::common::Indirection<
Fortran::evaluate::characteristics::Procedure, true>;