llvm/flang/lib/semantics/tools.h
Tim Keith 9ef62dbb6a [flang] Resolve and check names in equivalence sets
Collect sets of `parser::EquivalenceObject` to process at the end of
the specification part. This is so that names mentioned in the
EQUIVALENCE statement don't trigger implicit declarations.

The `EquivalenceSets` class performs most of the numerous checks
on objects that can be in equivalence sets at all and objects that
can be in them together. It also merges sets when the same object
appears in more than one.

Once equivalence sets are checked they are added to the `Scope`.
Further checks will be necessary after the size and alignment of
variables are computed.

Add `FindUltimateComponent` to simplify checks on ultimate components
of derived types. Use it to implement `HasCoarrayUltimateComponent`
and checks on equivalence objects.

Make `ExpressionAnalyzer::Analyze(Designator)` public so that
`parser::EquivalenceObject` can be analyzed.

Add `GetDefaultKind`, `doublePrecisionKind`, and `quadPrecisionKind`
to `SemanticsContext` so that `defaultKinds_` does not need to be
accessed directly.

Original-commit: flang-compiler/f18@1cc898e5b8
Reviewed-on: https://github.com/flang-compiler/f18/pull/494
Tree-same-pre-rewrite: false
2019-06-11 18:26:48 -07:00

160 lines
5.8 KiB
C++

// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_SEMANTICS_TOOLS_H_
#define FORTRAN_SEMANTICS_TOOLS_H_
// Simple predicates and look-up functions that are best defined
// canonically for use in semantic checking.
#include "expression.h"
#include "semantics.h"
#include "../common/Fortran.h"
#include "../evaluate/expression.h"
#include "../evaluate/variable.h"
#include "../parser/parse-tree.h"
#include <functional>
namespace Fortran::semantics {
class DeclTypeSpec;
class DerivedTypeSpec;
class Scope;
class Symbol;
const Symbol *FindCommonBlockContaining(const Symbol &object);
const Scope *FindProgramUnitContaining(const Scope &);
const Scope *FindProgramUnitContaining(const Symbol &);
const Scope *FindPureFunctionContaining(const Scope *);
const Symbol *FindPointerComponent(const Scope &);
const Symbol *FindPointerComponent(const DerivedTypeSpec &);
const Symbol *FindPointerComponent(const DeclTypeSpec &);
const Symbol *FindPointerComponent(const Symbol &);
const Symbol *FindFunctionResult(const Symbol &);
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object);
bool DoesScopeContain(const Scope *maybeAncestor, const Scope &maybeDescendent);
bool DoesScopeContain(const Scope *, const Symbol &);
bool IsUseAssociated(const Symbol *, const Scope &);
bool IsHostAssociated(const Symbol &, const Scope &);
bool IsDummy(const Symbol &);
bool IsPointerDummy(const Symbol &);
bool IsFunction(const Symbol &);
bool IsPureFunction(const Symbol &);
bool IsPureFunction(const Scope &);
bool IsProcedure(const Symbol &);
bool IsProcName(const Symbol &symbol); // proc-name
bool IsVariableName(const Symbol &symbol); // variable-name
bool IsProcedurePointer(const Symbol &);
// Is this a derived type from module with this name?
bool IsDerivedTypeFromModule(
const DerivedTypeSpec *derived, const char *module, const char *name);
bool IsTeamType(const DerivedTypeSpec *derived);
const bool IsEventTypeOrLockType(const DerivedTypeSpec *);
// Returns an ultimate component symbol that is a
// coarray or nullptr if there are no such component.
// There is no guarantee regarding which ultimate coarray
// component is returned in case there are several because this
// does not really matter for the checks where it is needed.
const Symbol *HasCoarrayUltimateComponent(const DerivedTypeSpec &);
// Same logic as HasCoarrayUltimateComponent, but looking for
// potential component of EVENT_TYPE or LOCK_TYPE from
// ISO_FORTRAN_ENV module.
const Symbol *HasEventOrLockPotentialComponent(const DerivedTypeSpec &);
// Return an ultimate component of type that matches predicate, or nullptr.
const Symbol *FindUltimateComponent(
const DerivedTypeSpec &type, std::function<bool(const Symbol &)> predicate);
inline bool IsPointer(const Symbol &symbol) {
return symbol.attrs().test(Attr::POINTER);
}
inline bool IsAllocatable(const Symbol &symbol) {
return symbol.attrs().test(Attr::ALLOCATABLE);
}
inline bool IsAllocatableOrPointer(const Symbol &symbol) {
return IsPointer(symbol) || IsAllocatable(symbol);
}
inline bool IsParameter(const Symbol &symbol) {
return symbol.attrs().test(Attr::PARAMETER);
}
// Determines whether an object might be visible outside a
// PURE function (C1594); returns a non-null Symbol pointer for
// diagnostic purposes if so.
const Symbol *FindExternallyVisibleObject(const Symbol &, const Scope &);
template<typename A>
const Symbol *FindExternallyVisibleObject(const A &, const Scope &) {
return nullptr; // default base case
}
template<typename T>
const Symbol *FindExternallyVisibleObject(
const evaluate::Designator<T> &designator, const Scope &scope) {
if (const Symbol * symbol{designator.GetBaseObject().symbol()}) {
return FindExternallyVisibleObject(*symbol, scope);
} else if (std::holds_alternative<evaluate::CoarrayRef>(designator.u)) {
// Coindexed values are visible even if their image-local objects are not.
return designator.GetBaseObject().symbol();
} else {
return nullptr;
}
}
template<typename T>
const Symbol *FindExternallyVisibleObject(
const evaluate::Expr<T> &expr, const Scope &scope) {
return std::visit(
[&](const auto &x) { return FindExternallyVisibleObject(x, scope); },
expr.u);
}
using SomeExpr = evaluate::Expr<evaluate::SomeType>;
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type);
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context);
struct GetExprHelper {
const SomeExpr *Get(const parser::Expr::TypedExpr &x) {
CHECK(x);
return x->v ? &*x->v : nullptr;
}
const SomeExpr *Get(const parser::Expr &x) { return Get(x.typedExpr); }
const SomeExpr *Get(const parser::Variable &x) { return Get(x.typedExpr); }
template<typename T> const SomeExpr *Get(const common::Indirection<T> &x) {
return Get(x.value());
}
template<typename T> const SomeExpr *Get(const std::optional<T> &x) {
return x.has_value() ? Get(x.value()) : nullptr;
}
template<typename T> const SomeExpr *Get(const T &x) {
if constexpr (ConstraintTrait<T>) {
return Get(x.thing);
} else if constexpr (WrapperTrait<T>) {
return Get(x.v);
} else {
return nullptr;
}
}
};
template<typename T> const SomeExpr *GetExpr(const T &x) {
return GetExprHelper{}.Get(x);
}
}
#endif // FORTRAN_SEMANTICS_TOOLS_H_