llvm/flang/runtime/time-intrinsic.cpp
V Donaldson 96e45a8958 [flang] Use full result range for clock_gettime implementation of SYSTEM_CLOCK
Update the primary clock_gettime implementation of SYSTEM_CLOCK to use
the full range of values, dependent on the type kind of the requested
result.  Counts/sec and count max for supported kinds become:

 kind          counts/sec             count max

    1                  10                   127
    2                1000                 32767
    4                1000            2147483647
    8          1000000000   9223372036854775807
   16          1000000000   9223372036854775807

The secondary "fallback" implementation is not changed.

Real valued COUNT_RATE arguments are not changed.

The test program below has calls for kinds 1, 2, 4, 8, 16.  Support for
these types varies by compiler.  The code as given can be restricted to
accommodate these variations, with results shown below.

subroutine c
  integer(1) c1, r1, m1
  integer(2) c2, r2, m2
  integer(4) c4, r4, m4
  integer(8) c8, r8, m8
  integer(16) c16, r16, m16

  print*
  print '(a5,3a22)', 'kind', 'counts/sec', 'count max', 'count'
  print*

  call system_clock(c1, r1, m1)
  print '(i5,3i22)', 1, r1, m1, c1

  call system_clock(c2, r2, m2)
  print '(i5,3i22)', 2, r2, m2, c2

  call system_clock(c4, r4, m4)
  print '(i5,3i22)', 4, r4, m4, c4

  call system_clock(c8, r8, m8)
  print '(i5,3i22)', 8, r8, m8, c8

  call system_clock(c16, r16, m16)
  print '(i5,3i22)', 16, r16, m16, c16
end

subroutine k(j)
  j = 0
  do i=1,1000000000
    j = j + i
  enddo
end

program p
  do i=1,1 ! increase loop count to check for (kind=1) wraparound
    call k(j)
    call c
  enddo
end

=== flang output without change (last column counts vary per run) ===

 kind          counts/sec             count max                 count

    1                 -24                   127                    83
    2                1000                   290                   211
    4                1000                   290                   211
    8          1000000000             290448383             211631452
   16          1000000000             290448383             211633853

=== flang output with change (last column counts vary per run) ===

    1                  10                   127                    21
    2                1000                 32767                  2100
    4                1000            2147483647                  2100
    8          1000000000   9223372036854775807            2100183374
   16          1000000000   9223372036854775807            2100185353

Other compilers; kind support varies (last column counts vary per run).
Test and ouput modified to avoid crashes and normalize results.
Some negative values indicate unsupported kinds; others are bugs.

 kind          counts/sec             count max                 count

    1                   0                     0                  -127
    2                   0                     0                -32767
    4                1000            2147483647              69271692
    8          1000000000   9223372036854775807        69271692353290
   16          1000000000   9223372036854775807        69271692354794

=======

    1                  10                   127                     0
    2                1000                 32767                     0
    4             1000000            2147483647                     0
    8            10000000   9223372036854775807                     9

=======

    1                   0                     0                  -127
    2                1000                 32767                  3263
    4               10000            2147483647            1788192630
    8             1000000   9223372036854775807      1649443459263095

=======

    1                 -24                    -1                    36
    2                1000                    -1                -10716
    4                1000            2147483647             176018980
    8                1000   9223372036854775807         1649443460644

=======

    2                 100                 28799                 23080
    4                 100               8639999               4285480
    8                 100               8639999               4285480
   16                 100               8639999               4285480

=======

    1                 -24                    -1                     4
    2                1000                 23551                -26108
    4                1000              86399999              67541508
    8             1000000   9223372036854775807      1649443541508087
2022-04-14 13:01:32 -07:00

364 lines
14 KiB
C++

//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements time-related intrinsic subroutines.
#include "flang/Runtime/time-intrinsic.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#ifndef _WIN32
#include <sys/time.h> // gettimeofday
#endif
// CPU_TIME (Fortran 2018 16.9.57)
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
//
// We can use std::clock() from the <ctime> header as a fallback implementation
// that should be available everywhere. This may not provide the best resolution
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
// is defined as 10^6 regardless of the actual precision of std::clock().
// Therefore, we will usually prefer platform-specific alternatives when they
// are available.
//
// We can use SFINAE to choose a platform-specific alternative. To do so, we
// introduce a helper function template, whose overload set will contain only
// implementations relying on interfaces which are actually available. Each
// overload will have a dummy parameter whose type indicates whether or not it
// should be preferred. Any other parameters required for SFINAE should have
// default values provided.
namespace {
// Types for the dummy parameter indicating the priority of a given overload.
// We will invoke our helper with an integer literal argument, so the overload
// with the highest priority should have the type int.
using fallback_implementation = double;
using preferred_implementation = int;
// This is the fallback implementation, which should work everywhere.
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
std::clock_t timestamp{std::clock()};
if (timestamp != static_cast<std::clock_t>(-1)) {
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
}
// Return some negative value to represent failure.
return -1.0;
}
#if defined CLOCK_PROCESS_CPUTIME_ID
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
#elif defined CLOCK_THREAD_CPUTIME_ID
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
#elif defined CLOCK_MONOTONIC
#define CLOCKID CLOCK_MONOTONIC
#else
#define CLOCKID CLOCK_REALTIME
#endif
// POSIX implementation using clock_gettime. This is only enabled where
// clock_gettime is available.
template <typename T = int, typename U = struct timespec>
double GetCpuTime(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
struct timespec tspec;
if (clock_gettime(CLOCKID, &tspec) == 0) {
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
}
// Return some negative value to represent failure.
return -1.0;
}
using count_t = std::int64_t;
using unsigned_count_t = std::uint64_t;
// Computes HUGE(INT(0,kind)) as an unsigned integer value.
static constexpr inline unsigned_count_t GetHUGE(int kind) {
if (kind > 8) {
kind = 8;
}
return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
}
// This is the fallback implementation, which should work everywhere. Note that
// in general we can't recover after std::clock has reached its maximum value.
template <typename Unused = void>
count_t GetSystemClockCount(int kind, fallback_implementation) {
std::clock_t timestamp{std::clock()};
if (timestamp == static_cast<std::clock_t>(-1)) {
// Return -HUGE(COUNT) to represent failure.
return -static_cast<count_t>(GetHUGE(kind));
}
// Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
// most likely a floating-point value (since C'11), so compute the modulus
// carefully when one is required.
constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
}
unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
// Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
// The result is a signed integer but never negative.
return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
}
template <typename Unused = void>
count_t GetSystemClockCountRate(int kind, fallback_implementation) {
return CLOCKS_PER_SEC;
}
template <typename Unused = void>
count_t GetSystemClockCountMax(int kind, fallback_implementation) {
constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
unsigned_count_t maxCount{GetHUGE(kind)};
return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
: static_cast<count_t>(maxCount);
}
// POSIX implementation using clock_gettime where available. The clock_gettime
// result is in nanoseconds, which is converted as necessary to
// - deciseconds for kind 1
// - milliseconds for kinds 2, 4
// - nanoseconds for kinds 8, 16
constexpr unsigned_count_t DS_PER_SEC{10u};
constexpr unsigned_count_t MS_PER_SEC{1'000u};
constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCount(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
struct timespec tspec;
const unsigned_count_t huge{GetHUGE(kind)};
if (clock_gettime(CLOCKID, &tspec) != 0) {
return -huge; // failure
}
unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
if (kind >= 8) {
return (sec * NS_PER_SEC + nsec) % (huge + 1);
} else if (kind >= 2) {
return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
} else { // kind == 1
return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
}
}
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountRate(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
}
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountMax(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
return GetHUGE(kind);
}
// DATE_AND_TIME (Fortran 2018 16.9.59)
// Helper to set an integer value to -HUGE
template <int KIND> struct StoreNegativeHugeAt {
void operator()(
const Fortran::runtime::Descriptor &result, std::size_t at) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
-std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max();
}
};
// Default implementation when date and time information is not available (set
// strings to blanks and values to -HUGE as defined by the standard).
static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
char *zone, std::size_t zoneChars,
const Fortran::runtime::Descriptor *values) {
if (date) {
std::memset(date, static_cast<int>(' '), dateChars);
}
if (time) {
std::memset(time, static_cast<int>(' '), timeChars);
}
if (zone) {
std::memset(zone, static_cast<int>(' '), zoneChars);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
for (std::size_t i = 0; i < 8; ++i) {
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
kind, terminator, *values, i);
}
}
}
#ifndef _WIN32
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
// field.
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, preferred_implementation,
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
// Returns the GMT offset in minutes.
return tm.tm_gmtoff / 60;
}
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, fallback_implementation) {
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
// (such as using timezone from <time.h> when available), but so far just
// return -HUGE to report that this information is not available.
return -std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max();
}
template <typename TM = struct tm> struct GmtOffsetHelper {
template <int KIND> struct StoreGmtOffset {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
TM &tm) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
GetGmtOffset<KIND>(tm, 0);
}
};
};
// Dispatch to posix implementation where gettimeofday and localtime_r are
// available.
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
timeval t;
if (gettimeofday(&t, nullptr) != 0) {
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
return;
}
time_t timer{t.tv_sec};
tm localTime;
localtime_r(&timer, &localTime);
std::intmax_t ms{t.tv_usec / 1000};
static constexpr std::size_t buffSize{16};
char buffer[buffSize];
auto copyBufferAndPad{
[&](char *dest, std::size_t destChars, std::size_t len) {
auto copyLen{std::min(len, destChars)};
std::memcpy(dest, buffer, copyLen);
for (auto i{copyLen}; i < destChars; ++i) {
dest[i] = ' ';
}
}};
if (date) {
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
copyBufferAndPad(date, dateChars, len);
}
if (time) {
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
copyBufferAndPad(time, timeChars, len);
}
if (zone) {
// Note: this may leave the buffer empty on many platforms. Classic flang
// has a much more complex way of doing this (see __io_timezone in classic
// flang).
auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
copyBufferAndPad(zone, zoneChars, len);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
void>(kind, terminator, *values, atIndex, value);
};
storeIntegerAt(0, localTime.tm_year + 1900);
storeIntegerAt(1, localTime.tm_mon + 1);
storeIntegerAt(2, localTime.tm_mday);
Fortran::runtime::ApplyIntegerKind<
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
kind, terminator, *values, 3, localTime);
storeIntegerAt(4, localTime.tm_hour);
storeIntegerAt(5, localTime.tm_min);
storeIntegerAt(6, localTime.tm_sec);
storeIntegerAt(7, ms);
}
}
#else
// Fallback implementation where gettimeofday or localtime_r are not both
// available (e.g. windows).
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
// TODO: An actual implementation for non Posix system should be added.
// So far, implement as if the date and time is not available on those
// platforms.
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
#endif
} // namespace
namespace Fortran::runtime {
extern "C" {
double RTNAME(CpuTime)() { return GetCpuTime(0); }
std::int64_t RTNAME(SystemClockCount)(int kind) {
return GetSystemClockCount(kind, 0);
}
std::int64_t RTNAME(SystemClockCountRate)(int kind) {
return GetSystemClockCountRate(kind, 0);
}
std::int64_t RTNAME(SystemClockCountMax)(int kind) {
return GetSystemClockCountMax(kind, 0);
}
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
std::size_t timeChars, char *zone, std::size_t zoneChars,
const char *source, int line, const Descriptor *values) {
Fortran::runtime::Terminator terminator{source, line};
return GetDateAndTime(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
} // extern "C"
} // namespace Fortran::runtime