llvm/flang/lib/semantics/tools.cc
peter klausler 3f00257e3b [flang] Fix crash
Original-commit: flang-compiler/f18@e00864f17e
Reviewed-on: https://github.com/flang-compiler/f18/pull/601
Tree-same-pre-rewrite: false
2019-07-22 14:05:07 -07:00

718 lines
25 KiB
C++

// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tools.h"
#include "scope.h"
#include "semantics.h"
#include "symbol.h"
#include "type.h"
#include "../common/Fortran.h"
#include "../common/indirection.h"
#include "../parser/message.h"
#include "../parser/parse-tree.h"
#include <algorithm>
#include <set>
#include <variant>
namespace Fortran::semantics {
static const Symbol *FindCommonBlockInScope(
const Scope &scope, const Symbol &object) {
for (const auto &pair : scope.commonBlocks()) {
const Symbol &block{*pair.second};
if (IsCommonBlockContaining(block, object)) {
return &block;
}
}
return nullptr;
}
const Symbol *FindCommonBlockContaining(const Symbol &object) {
for (const Scope *scope{&object.owner()}; !scope->IsGlobal();
scope = &scope->parent()) {
if (const Symbol * block{FindCommonBlockInScope(*scope, object)}) {
return block;
}
}
return nullptr;
}
const Scope *FindProgramUnitContaining(const Scope &start) {
const Scope *scope{&start};
while (scope != nullptr) {
switch (scope->kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram: return scope;
case Scope::Kind::Global: return nullptr;
case Scope::Kind::DerivedType:
case Scope::Kind::Block:
case Scope::Kind::Forall:
case Scope::Kind::ImpliedDos: scope = &scope->parent();
}
}
return nullptr;
}
const Scope *FindProgramUnitContaining(const Symbol &symbol) {
return FindProgramUnitContaining(symbol.owner());
}
const Scope *FindPureFunctionContaining(const Scope *scope) {
scope = FindProgramUnitContaining(*scope);
while (scope != nullptr) {
if (IsPureFunction(*scope)) {
return scope;
}
scope = FindProgramUnitContaining(scope->parent());
}
return nullptr;
}
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
const auto &objects{block.get<CommonBlockDetails>().objects()};
auto found{std::find(objects.begin(), objects.end(), &object)};
return found != objects.end();
}
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
const Scope *owner{FindProgramUnitContaining(symbol.GetUltimate().owner())};
return owner != nullptr && owner->kind() == Scope::Kind::Module &&
owner != FindProgramUnitContaining(scope);
}
bool DoesScopeContain(
const Scope *maybeAncestor, const Scope &maybeDescendent) {
if (maybeAncestor != nullptr) {
const Scope *scope{&maybeDescendent};
while (!scope->IsGlobal()) {
scope = &scope->parent();
if (scope == maybeAncestor) {
return true;
}
}
}
return false;
}
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
return DoesScopeContain(maybeAncestor, symbol.owner());
}
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
return DoesScopeContain(FindProgramUnitContaining(symbol), scope);
}
bool IsDummy(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
return details->isDummy();
} else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
return details->isDummy();
} else {
return false;
}
}
bool IsPointerDummy(const Symbol &symbol) {
return IsPointer(symbol) && IsDummy(symbol);
}
// variable-name
bool IsVariableName(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
return ultimate.has<ObjectEntityDetails>() && !IsParameter(ultimate);
}
// proc-name
bool IsProcName(const Symbol &symbol) {
return symbol.GetUltimate().has<ProcEntityDetails>();
}
bool IsFunction(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const SubprogramDetails &x) { return x.isFunction(); },
[&](const SubprogramNameDetails &x) {
return symbol.test(Symbol::Flag::Function);
},
[](const ProcEntityDetails &x) {
const auto &ifc{x.interface()};
return ifc.type() || (ifc.symbol() && IsFunction(*ifc.symbol()));
},
[](const ProcBindingDetails &x) { return IsFunction(x.symbol()); },
[](const UseDetails &x) { return IsFunction(x.symbol()); },
[](const auto &) { return false; },
},
symbol.details());
}
bool IsPureFunction(const Symbol &symbol) {
return symbol.attrs().test(Attr::PURE) && IsFunction(symbol);
}
bool IsPureFunction(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
return IsPureFunction(*symbol);
} else {
return false;
}
}
bool IsProcedure(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const SubprogramDetails &) { return true; },
[](const SubprogramNameDetails &) { return true; },
[](const ProcEntityDetails &) { return true; },
[](const GenericDetails &) { return true; },
[](const ProcBindingDetails &) { return true; },
[](const UseDetails &x) { return IsProcedure(x.symbol()); },
[](const auto &) { return false; },
},
symbol.details());
}
bool IsProcedurePointer(const Symbol &symbol) {
return symbol.has<ProcEntityDetails>() && IsPointer(symbol);
}
static const Symbol *FindPointerComponent(
const Scope &scope, std::set<const Scope *> &visited) {
if (!scope.IsDerivedType()) {
return nullptr;
}
if (!visited.insert(&scope).second) {
return nullptr;
}
// If there's a top-level pointer component, return it for clearer error
// messaging.
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (IsPointer(symbol)) {
return &symbol;
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * nested{derived->scope()}) {
if (const Symbol *
pointer{FindPointerComponent(*nested, visited)}) {
return pointer;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindPointerComponent(const Scope &scope) {
std::set<const Scope *> visited;
return FindPointerComponent(scope, visited);
}
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
if (const Scope * scope{derived.scope()}) {
return FindPointerComponent(*scope);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
return FindPointerComponent(*derived);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
return type ? FindPointerComponent(*type) : nullptr;
}
const Symbol *FindPointerComponent(const Symbol &symbol) {
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
}
// C1594 specifies several ways by which an object might be globally visible.
const Symbol *FindExternallyVisibleObject(
const Symbol &object, const Scope &scope) {
// TODO: Storage association with any object for which this predicate holds,
// once EQUIVALENCE is supported.
if (IsUseAssociated(object, scope) || IsHostAssociated(object, scope) ||
(IsPureFunction(scope) && IsPointerDummy(object)) ||
(object.attrs().test(Attr::INTENT_IN) && IsDummy(object))) {
return &object;
} else if (const Symbol * block{FindCommonBlockContaining(object)}) {
return block;
} else {
return nullptr;
}
}
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type) {
auto dynamicType{expr.GetType()};
return dynamicType.has_value() && dynamicType->category() == type;
}
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context) {
auto dynamicType{expr.GetType()};
return dynamicType.has_value() &&
dynamicType->category() != common::TypeCategory::Derived &&
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
}
const Symbol *FindInterface(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const ProcEntityDetails &details) {
return details.interface().symbol();
},
[](const ProcBindingDetails &details) { return &details.symbol(); },
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindSubprogram(const Symbol &symbol) {
return std::visit(
common::visitors{
[&](const ProcEntityDetails &details) -> const Symbol * {
if (const Symbol * interface{details.interface().symbol()}) {
return FindSubprogram(*interface);
} else {
return &symbol;
}
},
[](const ProcBindingDetails &details) {
return FindSubprogram(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindSubprogram(details.symbol());
},
[](const HostAssocDetails &details) {
return FindSubprogram(details.symbol());
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindFunctionResult(const Symbol &symbol) {
if (const Symbol * subp{FindSubprogram(symbol)}) {
if (const auto &subpDetails{subp->detailsIf<SubprogramDetails>()}) {
if (subpDetails->isFunction()) {
return &subpDetails->result();
}
}
}
return nullptr;
}
bool IsExtensibleType(const DerivedTypeSpec *derived) {
return derived && !IsIsoCType(derived) &&
!derived->typeSymbol().attrs().test(Attr::BIND_C) &&
!derived->typeSymbol().get<DerivedTypeDetails>().sequence();
}
bool IsDerivedTypeFromModule(
const DerivedTypeSpec *derived, const char *module, const char *name) {
if (!derived) {
return false;
} else {
const auto &symbol{derived->typeSymbol()};
return symbol.name() == name && symbol.owner().IsModule() &&
symbol.owner().name() == module;
}
}
bool IsIsoCType(const DerivedTypeSpec *derived) {
return IsDerivedTypeFromModule(derived, "iso_c_binding", "c_ptr") ||
IsDerivedTypeFromModule(derived, "iso_c_binding", "c_funptr");
}
bool IsTeamType(const DerivedTypeSpec *derived) {
return IsDerivedTypeFromModule(derived, "iso_fortran_env", "team_type");
}
const Symbol *HasCoarrayUltimateComponent(
const DerivedTypeSpec &derivedTypeSpec) {
return FindUltimateComponent(derivedTypeSpec, IsCoarray);
}
const bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
return IsDerivedTypeFromModule(
derivedTypeSpec, "iso_fortran_env", "event_type") ||
IsDerivedTypeFromModule(derivedTypeSpec, "iso_fortran_env", "lock_type");
}
const Symbol *HasEventOrLockPotentialComponent(
const DerivedTypeSpec &derivedTypeSpec) {
const Symbol &symbol{derivedTypeSpec.typeSymbol()};
// TODO is it guaranteed that derived type symbol have a scope and is it the
// right scope to look into?
CHECK(symbol.scope());
for (const Symbol *componentSymbol :
symbol.get<DerivedTypeDetails>().OrderComponents(*symbol.scope())) {
CHECK(componentSymbol);
if (!IsPointer(*componentSymbol)) {
if (const DeclTypeSpec * declTypeSpec{componentSymbol->GetType()}) {
if (const DerivedTypeSpec *
componentDerivedTypeSpec{declTypeSpec->AsDerived()}) {
// Avoid infinite loop, that may happen if the component
// is an allocatable of the same type as the derived type.
// TODO: Is it legal to have longer type loops: i.e type B has a
// component of type A that has an allocatable component of type B?
if (&symbol != &componentDerivedTypeSpec->typeSymbol()) {
if (IsEventTypeOrLockType(componentDerivedTypeSpec)) {
return componentSymbol;
} else if (const Symbol *
subcomponent{HasEventOrLockPotentialComponent(
*componentDerivedTypeSpec)}) {
return subcomponent;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derivedTypeSpec,
std::function<bool(const Symbol &)> predicate) {
const auto *scope{derivedTypeSpec.typeSymbol().scope()};
CHECK(scope);
for (const auto &pair : *scope) {
const Symbol &component{*pair.second};
const DeclTypeSpec *type{component.GetType()};
if (!type) {
continue;
}
const DerivedTypeSpec *derived{type->AsDerived()};
bool isUltimate{IsAllocatableOrPointer(component) || !derived};
if (const Symbol *
result{!isUltimate ? FindUltimateComponent(*derived, predicate)
: predicate(component) ? &component : nullptr}) {
return result;
}
}
return nullptr;
}
bool IsFinalizable(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * scope{derived->scope()}) {
for (auto &pair : *scope) {
Symbol &symbol{*pair.second};
if (symbol.has<FinalProcDetails>()) {
return true;
}
}
}
}
}
return false;
}
bool IsCoarray(const Symbol &symbol) { return symbol.Corank() > 0; }
bool IsAssumedSizeArray(const Symbol &symbol) {
const auto *details{symbol.detailsIf<ObjectEntityDetails>()};
return details && details->IsAssumedSize();
}
static const DeclTypeSpec &InstantiateIntrinsicType(Scope &scope,
const DeclTypeSpec &spec, SemanticsContext &semanticsContext) {
const IntrinsicTypeSpec *intrinsic{spec.AsIntrinsic()};
CHECK(intrinsic != nullptr);
if (evaluate::ToInt64(intrinsic->kind()).has_value()) {
return spec; // KIND is already a known constant
}
// The expression was not originally constant, but now it must be so
// in the context of a parameterized derived type instantiation.
KindExpr copy{intrinsic->kind()};
evaluate::FoldingContext &foldingContext{semanticsContext.foldingContext()};
copy = evaluate::Fold(foldingContext, std::move(copy));
int kind{semanticsContext.GetDefaultKind(intrinsic->category())};
if (auto value{evaluate::ToInt64(copy)}) {
if (evaluate::IsValidKindOfIntrinsicType(intrinsic->category(), *value)) {
kind = *value;
} else {
foldingContext.messages().Say(
"KIND parameter value (%jd) of intrinsic type %s "
"did not resolve to a supported value"_err_en_US,
static_cast<std::intmax_t>(*value),
parser::ToUpperCaseLetters(
common::EnumToString(intrinsic->category())));
}
}
switch (spec.category()) {
case DeclTypeSpec::Numeric:
return scope.MakeNumericType(intrinsic->category(), KindExpr{kind});
case DeclTypeSpec::Logical: //
return scope.MakeLogicalType(KindExpr{kind});
case DeclTypeSpec::Character:
return scope.MakeCharacterType(
ParamValue{spec.characterTypeSpec().length()}, KindExpr{kind});
default: CRASH_NO_CASE;
}
}
static const DeclTypeSpec *FindInstantiatedDerivedType(const Scope &scope,
const DerivedTypeSpec &spec, DeclTypeSpec::Category category) {
DeclTypeSpec type{category, spec};
if (const auto *found{scope.FindType(type)}) {
return found;
} else if (scope.IsGlobal()) {
return nullptr;
} else {
return FindInstantiatedDerivedType(scope.parent(), spec, category);
}
}
static Symbol &InstantiateSymbol(const Symbol &, Scope &, SemanticsContext &);
std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
std::list<SourceName> result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterNames(spec->typeSymbol());
}
const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
result.insert(result.end(), paramNames.begin(), paramNames.end());
return result;
}
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterDeclarations(spec->typeSymbol());
}
const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
return result;
}
void InstantiateDerivedType(DerivedTypeSpec &spec, Scope &containingScope,
SemanticsContext &semanticsContext) {
Scope &newScope{containingScope.MakeScope(Scope::Kind::DerivedType)};
newScope.set_derivedTypeSpec(spec);
spec.ReplaceScope(newScope);
const Symbol &typeSymbol{spec.typeSymbol()};
const Scope *typeScope{typeSymbol.scope()};
CHECK(typeScope != nullptr);
for (const Symbol *symbol : OrderParameterDeclarations(typeSymbol)) {
const SourceName &name{symbol->name()};
if (typeScope->find(symbol->name()) != typeScope->end()) {
// This type parameter belongs to the derived type itself, not to
// one of its parents. Put the type parameter expression value
// into the new scope as the initialization value for the parameter.
if (ParamValue * paramValue{spec.FindParameter(name)}) {
const TypeParamDetails &details{symbol->get<TypeParamDetails>()};
paramValue->set_attr(details.attr());
if (MaybeIntExpr expr{paramValue->GetExplicit()}) {
// Ensure that any kind type parameters with values are
// constant by now.
if (details.attr() == common::TypeParamAttr::Kind) {
// Any errors in rank and type will have already elicited
// messages, so don't pile on by complaining further here.
if (auto maybeDynamicType{expr->GetType()}) {
if (expr->Rank() == 0 &&
maybeDynamicType->category() == TypeCategory::Integer) {
if (!evaluate::ToInt64(*expr).has_value()) {
std::stringstream fortran;
fortran << *expr;
if (auto *msg{
semanticsContext.foldingContext().messages().Say(
"Value of kind type parameter '%s' (%s) is not "
"a scalar INTEGER constant"_err_en_US,
name, fortran.str())}) {
msg->Attach(name, "declared here"_en_US);
}
}
}
}
}
TypeParamDetails instanceDetails{details.attr()};
if (const DeclTypeSpec * type{details.type()}) {
instanceDetails.set_type(*type);
}
instanceDetails.set_init(std::move(*expr));
Symbol *parameter{
newScope.try_emplace(name, std::move(instanceDetails))
.first->second};
CHECK(parameter != nullptr);
}
}
}
}
// Instantiate every non-parameter symbol from the original derived
// type's scope into the new instance.
auto restorer{semanticsContext.foldingContext().WithPDTInstance(spec)};
newScope.AddSourceRange(typeScope->sourceRange());
for (const auto &pair : *typeScope) {
const Symbol &symbol{*pair.second};
InstantiateSymbol(symbol, newScope, semanticsContext);
}
}
void ProcessParameterExpressions(
DerivedTypeSpec &spec, evaluate::FoldingContext &foldingContext) {
auto paramDecls{OrderParameterDeclarations(spec.typeSymbol())};
// Fold the explicit type parameter value expressions first. Do not
// fold them within the scope of the derived type being instantiated;
// these expressions cannot use its type parameters. Convert the values
// of the expressions to the declared types of the type parameters.
for (const Symbol *symbol : paramDecls) {
const SourceName &name{symbol->name()};
if (ParamValue * paramValue{spec.FindParameter(name)}) {
if (const MaybeIntExpr & expr{paramValue->GetExplicit()}) {
if (auto converted{evaluate::ConvertToType(*symbol, SomeExpr{*expr})}) {
SomeExpr folded{
evaluate::Fold(foldingContext, std::move(*converted))};
if (auto *intExpr{std::get_if<SomeIntExpr>(&folded.u)}) {
paramValue->SetExplicit(std::move(*intExpr));
continue;
}
}
std::stringstream fortran;
fortran << *expr;
if (auto *msg{foldingContext.messages().Say(
"Value of type parameter '%s' (%s) is not "
"convertible to its type"_err_en_US,
name, fortran.str())}) {
msg->Attach(name, "declared here"_en_US);
}
}
}
}
// Type parameter default value expressions are folded in declaration order
// within the scope of the derived type so that the values of earlier type
// parameters are available for use in the default initialization
// expressions of later parameters.
auto restorer{foldingContext.WithPDTInstance(spec)};
for (const Symbol *symbol : paramDecls) {
const SourceName &name{symbol->name()};
const TypeParamDetails &details{symbol->get<TypeParamDetails>()};
MaybeIntExpr expr;
ParamValue *paramValue{spec.FindParameter(name)};
if (paramValue == nullptr) {
expr = evaluate::Fold(foldingContext, common::Clone(details.init()));
} else if (paramValue->isExplicit()) {
expr = paramValue->GetExplicit();
}
if (expr.has_value()) {
if (paramValue != nullptr) {
paramValue->SetExplicit(std::move(*expr));
} else {
spec.AddParamValue(symbol->name(), ParamValue{std::move(*expr)});
}
}
}
}
const DeclTypeSpec &FindOrInstantiateDerivedType(Scope &scope,
DerivedTypeSpec &&spec, SemanticsContext &semanticsContext,
DeclTypeSpec::Category category) {
ProcessParameterExpressions(spec, semanticsContext.foldingContext());
if (const DeclTypeSpec *
type{FindInstantiatedDerivedType(scope, spec, category)}) {
return *type;
}
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
DeclTypeSpec &type{scope.MakeDerivedType(std::move(spec), category)};
InstantiateDerivedType(type.derivedTypeSpec(), scope, semanticsContext);
return type;
}
// Clone a Symbol in the context of a parameterized derived type instance
static Symbol &InstantiateSymbol(
const Symbol &symbol, Scope &scope, SemanticsContext &semanticsContext) {
evaluate::FoldingContext foldingContext{semanticsContext.foldingContext()};
CHECK(foldingContext.pdtInstance() != nullptr);
const DerivedTypeSpec &instanceSpec{*foldingContext.pdtInstance()};
auto pair{scope.try_emplace(symbol.name(), symbol.attrs())};
Symbol &result{*pair.first->second};
if (!pair.second) {
// Symbol was already present in the scope, which can only happen
// in the case of type parameters.
CHECK(symbol.has<TypeParamDetails>());
return result;
}
result.attrs() = symbol.attrs();
result.flags() = symbol.flags();
result.set_details(common::Clone(symbol.details()));
if (auto *details{result.detailsIf<ObjectEntityDetails>()}) {
if (DeclTypeSpec * origType{result.GetType()}) {
if (const DerivedTypeSpec * derived{origType->AsDerived()}) {
DerivedTypeSpec newSpec{*derived};
if (symbol.test(Symbol::Flag::ParentComp)) {
// Forward any explicit type parameter values from the
// derived type spec under instantiation to its parent
// component derived type spec that define type parameters
// of the parent component.
for (const auto &pair : instanceSpec.parameters()) {
if (scope.find(pair.first) == scope.end()) {
newSpec.AddParamValue(pair.first, ParamValue{pair.second});
}
}
}
details->ReplaceType(FindOrInstantiateDerivedType(
scope, std::move(newSpec), semanticsContext, origType->category()));
} else if (origType->AsIntrinsic() != nullptr) {
details->ReplaceType(
InstantiateIntrinsicType(scope, *origType, semanticsContext));
} else if (origType->category() != DeclTypeSpec::ClassStar) {
DIE("instantiated component has type that is "
"neither intrinsic, derived, nor CLASS(*)");
}
}
details->set_init(
evaluate::Fold(foldingContext, std::move(details->init())));
for (ShapeSpec &dim : details->shape()) {
if (dim.lbound().isExplicit()) {
dim.lbound().SetExplicit(
Fold(foldingContext, std::move(dim.lbound().GetExplicit())));
}
if (dim.ubound().isExplicit()) {
dim.ubound().SetExplicit(
Fold(foldingContext, std::move(dim.ubound().GetExplicit())));
}
}
for (ShapeSpec &dim : details->coshape()) {
if (dim.lbound().isExplicit()) {
dim.lbound().SetExplicit(
Fold(foldingContext, std::move(dim.lbound().GetExplicit())));
}
if (dim.ubound().isExplicit()) {
dim.ubound().SetExplicit(
Fold(foldingContext, std::move(dim.ubound().GetExplicit())));
}
}
}
return result;
}
}