Find a file
Reid Kleckner 98c89ccfbd [MSVC] Don't add -nostdinc++ -isystem to runtimes builds
If the host compiler is MSVC or clang-cl, then the compiler used to
buidl the runtimes will be clang-cl, and it doesn't support either of
those flags.

Worse, because -isystem is a space separated flag, it causes all cmake
try_compile tests to fail, so none of the -Wno-* flags make it to the
compiler in libcxx. I noticed that we weren't passing
-Wno-user-defined-literals to clang-cl and were getting warnings in the
build, and this fixes that for me.

Differential Revision: https://reviews.llvm.org/D94817
2021-01-15 13:22:07 -08:00
.github [github] Move repo lockdown config into llvm-project repo 2021-01-11 16:20:08 -08:00
clang [CodeView][DebugInfo] Add test case to show that linkage names are not 2021-01-15 12:05:33 -08:00
clang-tools-extra [clangd] Update CC Ranking model with better sampling. 2021-01-15 18:13:24 +01:00
compiler-rt [GWP-ASan] Add inbuilt options parser. 2021-01-15 12:57:05 -08:00
debuginfo-tests Fix check-gdb-mlir-support build after MLIR API changed to take Context as first argument 2021-01-07 21:30:39 +00:00
flang [flang][driver] Copy test file into a temp dir when testing (nfc) 2021-01-15 17:12:42 +00:00
libc [libc] CopyAlignedBlocks can now specify alignment on top of block size 2021-01-15 15:32:02 +00:00
libclc
libcxx Fix libc++ clang-cl build, swap attribute order 2021-01-15 11:44:13 -08:00
libcxxabi [libc++/abi] Re-remove unnecessary null pointer checks from operator delete 2021-01-08 17:03:50 -05:00
libunwind [libunwind] Unwind through aarch64/Linux sigreturn frame 2021-01-13 16:38:36 -08:00
lld [WebAssembly] Add support for table linking to wasm-ld 2021-01-15 09:21:52 +01:00
lldb [lldb][docs] Translate ASCII art to restructured text formatting 2021-01-15 14:43:27 +01:00
llvm [SimplifyCFG] switchToSelect(): don't forget to insert DomTree edge iff needed 2021-01-15 23:35:57 +03:00
mlir [mlir] Add Complex dialect. 2021-01-15 19:58:10 +01:00
openmp [libomptarget][nvptx] Reduce calls to cuda header 2021-01-15 02:16:33 +00:00
parallel-libs
polly [NFC] Rename ThinLTOPhase to ThinOrFullLTOPhase and move it from PassBuilder.h 2021-01-13 15:55:40 -08:00
pstl [pstl] Replace direct use of assert() with _PSTL_ASSERT 2020-11-02 18:35:54 -05:00
runtimes [MSVC] Don't add -nostdinc++ -isystem to runtimes builds 2021-01-15 13:22:07 -08:00
utils/arcanist
.arcconfig Set the target branch for arc land to main 2020-12-07 21:57:32 +00:00
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore Revert "[lldb][docs] Use sphinx instead of epydoc to generate LLDB's Python reference" 2021-01-15 14:07:45 +01:00
CONTRIBUTING.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.