llvm/flang/lib/semantics/tools.h

370 lines
14 KiB
C++

// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_SEMANTICS_TOOLS_H_
#define FORTRAN_SEMANTICS_TOOLS_H_
// Simple predicates and look-up functions that are best defined
// canonically for use in semantic checking.
#include "attr.h"
#include "expression.h"
#include "semantics.h"
#include "../common/Fortran.h"
#include "../evaluate/expression.h"
#include "../evaluate/variable.h"
#include "../parser/message.h"
#include "../parser/parse-tree.h"
#include <functional>
namespace Fortran::semantics {
class DeclTypeSpec;
class DerivedTypeSpec;
class Scope;
class Symbol;
const Symbol *FindCommonBlockContaining(const Symbol &object);
const Scope *FindProgramUnitContaining(const Scope &);
const Scope *FindProgramUnitContaining(const Symbol &);
const Scope *FindPureProcedureContaining(const Scope *);
const Symbol *FindPointerComponent(const Scope &);
const Symbol *FindPointerComponent(const DerivedTypeSpec &);
const Symbol *FindPointerComponent(const DeclTypeSpec &);
const Symbol *FindPointerComponent(const Symbol &);
const Symbol *FindInterface(const Symbol &);
const Symbol *FindSubprogram(const Symbol &);
const Symbol *FindFunctionResult(const Symbol &);
// Return the Symbol of the variable of a construct association, if it exists
const Symbol *GetAssociationRoot(const Symbol &);
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object);
bool DoesScopeContain(const Scope *maybeAncestor, const Scope &maybeDescendent);
bool DoesScopeContain(const Scope *, const Symbol &);
bool IsUseAssociated(const Symbol *, const Scope &);
bool IsHostAssociated(const Symbol &, const Scope &);
bool IsDummy(const Symbol &);
bool IsPointerDummy(const Symbol &);
bool IsFunction(const Symbol &);
bool IsPureProcedure(const Symbol &);
bool IsPureProcedure(const Scope &);
bool IsProcedure(const Symbol &);
bool IsProcName(const Symbol &symbol); // proc-name
bool IsVariableName(const Symbol &symbol); // variable-name
bool IsProcedurePointer(const Symbol &);
bool IsFunctionResult(const Symbol &);
bool IsFunctionResultWithSameNameAsFunction(const Symbol &);
bool IsExtensibleType(const DerivedTypeSpec *);
// Is this a derived type from module with this name?
bool IsDerivedTypeFromModule(
const DerivedTypeSpec *derived, const char *module, const char *name);
// Is this derived type TEAM_TYPE from module ISO_FORTRAN_ENV
bool IsTeamType(const DerivedTypeSpec *);
// Is this derived type either C_PTR or C_FUNPTR from module ISO_C_BINDING
bool IsIsoCType(const DerivedTypeSpec *);
bool IsEventTypeOrLockType(const DerivedTypeSpec *);
bool IsOrContainsEventOrLockComponent(const Symbol &);
// Has an explicit or implied SAVE attribute
bool IsSaved(const Symbol &);
bool CanBeTypeBoundProc(const Symbol *);
// Return an ultimate component of type that matches predicate, or nullptr.
const Symbol *FindUltimateComponent(
const DerivedTypeSpec &type, std::function<bool(const Symbol &)> predicate);
inline bool IsPointer(const Symbol &symbol) {
return symbol.attrs().test(Attr::POINTER);
}
inline bool IsAllocatable(const Symbol &symbol) {
return symbol.attrs().test(Attr::ALLOCATABLE);
}
inline bool IsAllocatableOrPointer(const Symbol &symbol) {
return IsPointer(symbol) || IsAllocatable(symbol);
}
inline bool IsNamedConstant(const Symbol &symbol) {
return symbol.attrs().test(Attr::PARAMETER);
}
inline bool IsOptional(const Symbol &symbol) {
return symbol.attrs().test(Attr::OPTIONAL);
}
inline bool IsIntentIn(const Symbol &symbol) {
return symbol.attrs().test(Attr::INTENT_IN);
}
inline bool IsProtected(const Symbol &symbol) {
return symbol.attrs().test(Attr::PROTECTED);
}
bool IsFinalizable(const Symbol &);
bool IsCoarray(const Symbol &);
inline bool IsAssumedSizeArray(const Symbol &symbol) {
const auto *details{symbol.detailsIf<ObjectEntityDetails>()};
return details && details->IsAssumedSize();
}
bool IsAssumedLengthCharacter(const Symbol &);
bool IsAssumedLengthCharacterFunction(const Symbol &);
std::optional<parser::MessageFixedText> WhyNotModifiable(
const Symbol &symbol, const Scope &scope);
// Is the symbol modifiable in this scope
bool IsExternalInPureContext(const Symbol &symbol, const Scope &scope);
// Returns the complete list of derived type parameter symbols in
// the order in which their declarations appear in the derived type
// definitions (parents first).
SymbolVector OrderParameterDeclarations(const Symbol &);
// Returns the complete list of derived type parameter names in the
// order defined by 7.5.3.2.
std::list<SourceName> OrderParameterNames(const Symbol &);
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
void InstantiateDerivedType(DerivedTypeSpec &, Scope &, SemanticsContext &);
// Return an existing or new derived type instance
const DeclTypeSpec &FindOrInstantiateDerivedType(Scope &, DerivedTypeSpec &&,
SemanticsContext &, DeclTypeSpec::Category = DeclTypeSpec::TypeDerived);
void ProcessParameterExpressions(DerivedTypeSpec &, evaluate::FoldingContext &);
// Determines whether an object might be visible outside a
// PURE function (C1594); returns a non-null Symbol pointer for
// diagnostic purposes if so.
const Symbol *FindExternallyVisibleObject(const Symbol &, const Scope &);
template<typename A>
const Symbol *FindExternallyVisibleObject(const A &, const Scope &) {
return nullptr; // default base case
}
template<typename T>
const Symbol *FindExternallyVisibleObject(
const evaluate::Designator<T> &designator, const Scope &scope) {
if (const Symbol * symbol{designator.GetBaseObject().symbol()}) {
return FindExternallyVisibleObject(*symbol, scope);
} else if (std::holds_alternative<evaluate::CoarrayRef>(designator.u)) {
// Coindexed values are visible even if their image-local objects are not.
return designator.GetBaseObject().symbol();
} else {
return nullptr;
}
}
template<typename T>
const Symbol *FindExternallyVisibleObject(
const evaluate::Expr<T> &expr, const Scope &scope) {
return std::visit(
[&](const auto &x) { return FindExternallyVisibleObject(x, scope); },
expr.u);
}
using SomeExpr = evaluate::Expr<evaluate::SomeType>;
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type);
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context);
struct GetExprHelper {
const SomeExpr *Get(const parser::Expr::TypedExpr &x) {
CHECK(x);
return x->v ? &*x->v : nullptr;
}
const SomeExpr *Get(const parser::Expr &x) { return Get(x.typedExpr); }
const SomeExpr *Get(const parser::Variable &x) { return Get(x.typedExpr); }
template<typename T> const SomeExpr *Get(const common::Indirection<T> &x) {
return Get(x.value());
}
template<typename T> const SomeExpr *Get(const std::optional<T> &x) {
return x.has_value() ? Get(x.value()) : nullptr;
}
template<typename T> const SomeExpr *Get(const T &x) {
if constexpr (ConstraintTrait<T>) {
return Get(x.thing);
} else if constexpr (WrapperTrait<T>) {
return Get(x.v);
} else {
return nullptr;
}
}
};
template<typename T> const SomeExpr *GetExpr(const T &x) {
return GetExprHelper{}.Get(x);
}
template<typename T> std::optional<std::int64_t> GetIntValue(const T &x) {
if (const auto *expr{GetExpr(x)}) {
return evaluate::ToInt64(*expr);
} else {
return std::nullopt;
}
}
// Derived type component iterator that provides a C++ LegacyForwardIterator
// iterator over the Ordered, Direct, Ultimate or Potential components of a
// DerivedTypeSpec. These iterators can be used with STL algorithms
// accepting LegacyForwadIterator.
// The kind of component is a template argument of the iterator factory
// ComponentIterator.
//
//
// - Ordered components are the components from the component order defined
// in 7.5.4.7, except that the parent component IS added between the parent
// component order and the components in order of declaration.
// This "deviation" is important for structure-constructor analysis.
// For this kind of iterator, the component tree is recursively visited in the
// following order:
// - first, the Ordered components of the parent type (if relevant)
// - then, the parent component (if relevant, different from 7.5.4.7!)
// - then, the components in declaration order (without visiting subcomponents)
//
// - Ultimate, Direct and Potential components are as defined in 7.5.1.
// Parent and procedure components are considered against these definitions.
// For this kind of iterator, the component tree is recursively visited in the
// following order:
// - the parent component first (if relevant)
// - then, the components of the parent type (if relevant)
// + visiting the component and then, if it is derived type data component,
// visiting the subcomponents before visiting the next
// component in declaration order.
// - then, components in declaration order, similarly to components of parent
// type.
// Here, the parent component is visited first so that search for a component
// verifying a property will never descend into a component that already
// verifies the property (this helps giving clearer feedback).
//
// ComponentIterator::const_iterator remain valid during the whole lifetime of
// the DerivedTypeSpec passed by reference to the ComponentIterator factory.
// Their validity is independent of the ComponentIterator factory lifetime.
//
// For safety and simplicity, the iterators are read only and can only be
// incremented. This could be changed if desired.
//
// Note that iterators are made in such a way that one can easily test and build
// info message in the following way:
// ComponentIterator<ComponentIterator> comp{derived}
// if (auto it{std::find_if(comp.begin(), comp.end(), predicate)}) {
// msg = it.BuildResultDesignatorName() + " verifies predicates";
// const Symbol* component{*it};
// ....
// }
ENUM_CLASS(ComponentKind, Ordered, Direct, Ultimate, Potential)
template<ComponentKind componentKind> class ComponentIterator {
public:
ComponentIterator(const DerivedTypeSpec &derived) : derived_{derived} {}
class const_iterator {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = const Symbol *;
using difference_type = void;
using pointer = const value_type *;
using reference = const value_type &;
static const_iterator Create(const DerivedTypeSpec &);
const_iterator &operator++() {
Increment();
return *this;
}
const_iterator operator++(int) {
const_iterator tmp(*this);
Increment();
return tmp;
}
reference operator*() const {
CHECK(!componentPath_.empty());
return std::get<0>(componentPath_.back());
}
bool operator==(const const_iterator &other) const {
return componentPath_ == other.componentPath_;
}
bool operator!=(const const_iterator &other) const {
return !(*this == other);
}
// bool() operator indicates if the iterator can be dereferenced without
// having to check against an end() iterator.
explicit operator bool() const {
return !componentPath_.empty() &&
GetComponentSymbol(componentPath_.back());
}
// Build a designator name of the referenced component for messages.
// The designator helps when the component referred to by the iterator
// may be "buried" into other components. This gives the full
// path inside the iterated derived type: e.g "%a%b%c%ultimate"
// when (*it)->names() only gives "ultimate". Parent component are
// part of the path for clarity, even though they could be
// skipped.
std::string BuildResultDesignatorName() const;
private:
using name_iterator = typename std::list<SourceName>::const_iterator;
using ComponentPathNode =
std::tuple<const Symbol *, const DerivedTypeSpec *, name_iterator>;
using ComponentPath = std::vector<ComponentPathNode>;
static const Symbol *GetComponentSymbol(const ComponentPathNode &node) {
return std::get<0>(node);
}
static void SetComponentSymbol(ComponentPathNode &node, const Symbol *sym) {
std::get<0>(node) = sym;
}
static const Symbol &GetTypeSymbol(const ComponentPathNode &node) {
return std::get<1>(node)->typeSymbol();
}
static const Scope *GetScope(const ComponentPathNode &node) {
return std::get<1>(node)->scope();
}
static name_iterator &GetIterator(ComponentPathNode &node) {
return std::get<2>(node);
}
bool PlanComponentTraversal(const Symbol &component);
void Increment();
ComponentPath componentPath_;
};
const_iterator begin() { return cbegin(); }
const_iterator end() { return cend(); }
const_iterator cbegin() { return const_iterator::Create(derived_); }
const_iterator cend() { return const_iterator{}; }
private:
const DerivedTypeSpec &derived_;
};
extern template class ComponentIterator<ComponentKind::Ordered>;
extern template class ComponentIterator<ComponentKind::Direct>;
extern template class ComponentIterator<ComponentKind::Ultimate>;
extern template class ComponentIterator<ComponentKind::Potential>;
using OrderedComponentIterator = ComponentIterator<ComponentKind::Ordered>;
using DirectComponentIterator = ComponentIterator<ComponentKind::Direct>;
using UltimateComponentIterator = ComponentIterator<ComponentKind::Ultimate>;
using PotentialComponentIterator = ComponentIterator<ComponentKind::Potential>;
// Common component searches, the iterator returned is referring to the first
// component, according to the order defined for the related ComponentIterator,
// that verifies the property from the name.
// If no components verifies the property, an end iterator (casting to false)
// is returned. Otherwise, the returned iterator cast to true and can be
// dereferenced.
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
const DerivedTypeSpec &);
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
const DerivedTypeSpec &);
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
const DerivedTypeSpec &);
}
#endif // FORTRAN_SEMANTICS_TOOLS_H_