llvm/flang/lib/semantics/resolve-names.cc

4732 lines
165 KiB
C++

// Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "resolve-names.h"
#include "attr.h"
#include "expression.h"
#include "mod-file.h"
#include "program-tree.h"
#include "resolve-names-utils.h"
#include "rewrite-parse-tree.h"
#include "scope.h"
#include "semantics.h"
#include "symbol.h"
#include "tools.h"
#include "type.h"
#include "../common/Fortran.h"
#include "../common/default-kinds.h"
#include "../common/indirection.h"
#include "../common/restorer.h"
#include "../evaluate/common.h"
#include "../evaluate/fold.h"
#include "../evaluate/intrinsics.h"
#include "../evaluate/tools.h"
#include "../evaluate/type.h"
#include "../parser/parse-tree-visitor.h"
#include "../parser/parse-tree.h"
#include "../parser/tools.h"
#include <list>
#include <map>
#include <memory>
#include <ostream>
#include <set>
namespace Fortran::semantics {
using namespace parser::literals;
template<typename T> using Indirection = common::Indirection<T>;
using Message = parser::Message;
using Messages = parser::Messages;
using MessageFixedText = parser::MessageFixedText;
using MessageFormattedText = parser::MessageFormattedText;
class ResolveNamesVisitor;
// ImplicitRules maps initial character of identifier to the DeclTypeSpec
// representing the implicit type; std::nullopt if none.
// It also records the presence of IMPLICIT NONE statements.
// When inheritFromParent is set, defaults come from the parent rules.
class ImplicitRules {
public:
ImplicitRules(SemanticsContext &context, ImplicitRules *parent)
: parent_{parent}, context_{context} {
inheritFromParent_ = parent != nullptr;
}
bool isImplicitNoneType() const;
bool isImplicitNoneExternal() const;
void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
void set_inheritFromParent(bool x) { inheritFromParent_ = x; }
// Get the implicit type for identifiers starting with ch. May be null.
const DeclTypeSpec *GetType(char ch) const;
// Record the implicit type for this range of characters.
void SetType(const DeclTypeSpec &type, parser::Location lo, parser::Location,
bool isDefault = false);
private:
static char Incr(char ch);
ImplicitRules *parent_;
SemanticsContext &context_;
bool inheritFromParent_; // look in parent if not specified here
std::optional<bool> isImplicitNoneType_;
std::optional<bool> isImplicitNoneExternal_;
// map initial character of identifier to nullptr or its default type
std::map<char, const DeclTypeSpec *> map_;
friend std::ostream &operator<<(std::ostream &, const ImplicitRules &);
friend void ShowImplicitRule(std::ostream &, const ImplicitRules &, char);
};
// Track statement source locations and save messages.
class MessageHandler {
public:
Messages &messages() { return context_->messages(); };
void set_context(SemanticsContext &context) { context_ = &context; }
const SourceName *currStmtSource() { return context_->location(); }
void set_currStmtSource(const SourceName *source) {
context_->set_location(source);
}
// Emit a message associated with the current statement source.
Message &Say(MessageFixedText &&);
Message &Say(MessageFormattedText &&);
// Emit a message about a SourceName
Message &Say(const SourceName &, MessageFixedText &&);
// Emit a formatted message associated with a source location.
Message &Say(const SourceName &, MessageFixedText &&, const SourceName &);
Message &Say(const SourceName &, MessageFixedText &&, const SourceName &,
const SourceName &);
private:
SemanticsContext *context_{nullptr};
};
// Inheritance graph for the parse tree visitation classes that follow:
// BaseVisitor
// + AttrsVisitor
// | + DeclTypeSpecVisitor
// | + ImplicitRulesVisitor
// | + ScopeHandler -----------+--+
// | + ModuleVisitor ========|==+
// | + InterfaceVisitor | |
// | +-+ SubprogramVisitor ==|==+
// + ArraySpecVisitor | |
// + DeclarationVisitor <--------+ |
// + ConstructVisitor |
// + ResolveNamesVisitor <------+
class BaseVisitor {
public:
template<typename T> void Walk(const T &);
void set_this(ResolveNamesVisitor *x) { this_ = x; }
MessageHandler &messageHandler() { return messageHandler_; }
const SourceName *currStmtSource() { return context_->location(); }
SemanticsContext &context() const { return *context_; }
void set_context(SemanticsContext &);
evaluate::FoldingContext &GetFoldingContext() const {
return context_->foldingContext();
}
// Make a placeholder symbol for a Name that otherwise wouldn't have one.
// It is not in any scope and always has MiscDetails.
void MakePlaceholder(const parser::Name &, MiscDetails::Kind);
template<typename T> common::IfNoLvalue<T, T> FoldExpr(T &&expr) {
return evaluate::Fold(GetFoldingContext(), std::move(expr));
}
template<typename T> MaybeExpr EvaluateExpr(const T &expr) {
return FoldExpr(AnalyzeExpr(*context_, expr));
}
template<typename T>
MaybeExpr EvaluateConvertedExpr(
const Symbol &symbol, const T &expr, parser::CharBlock source) {
if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) {
if (auto converted{
evaluate::ConvertToType(symbol, std::move(*maybeExpr))}) {
return FoldExpr(std::move(*converted));
} else {
Say(source,
"Initialization expression could not be converted to declared type of symbol '%s'"_err_en_US,
symbol.name());
}
}
return std::nullopt;
}
template<typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) {
if (MaybeExpr maybeExpr{EvaluateExpr(expr)}) {
if (auto *intExpr{evaluate::UnwrapExpr<SomeIntExpr>(*maybeExpr)}) {
return std::move(*intExpr);
}
}
return std::nullopt;
}
template<typename T>
MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) {
if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) {
return FoldExpr(evaluate::ConvertToType<evaluate::SubscriptInteger>(
std::move(*maybeIntExpr)));
} else {
return std::nullopt;
}
}
template<typename... A> Message &Say(A &&... args) {
return messageHandler_.Say(std::forward<A>(args)...);
}
template<typename... A>
Message &Say(
const parser::Name &name, MessageFixedText &&text, const A &... args) {
return messageHandler_.Say(name.source, std::move(text), args...);
}
private:
ResolveNamesVisitor *this_{nullptr};
SemanticsContext *context_{nullptr};
MessageHandler messageHandler_;
};
// Provide Post methods to collect attributes into a member variable.
class AttrsVisitor : public virtual BaseVisitor {
public:
bool BeginAttrs(); // always returns true
Attrs GetAttrs();
Attrs EndAttrs();
bool SetPassNameOn(Symbol &);
bool SetBindNameOn(Symbol &);
void Post(const parser::LanguageBindingSpec &);
bool Pre(const parser::AccessSpec &);
bool Pre(const parser::IntentSpec &);
bool Pre(const parser::Pass &);
// Simple case: encountering CLASSNAME causes ATTRNAME to be set.
#define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
bool Pre(const parser::CLASSNAME &) { \
attrs_->set(Attr::ATTRNAME); \
return false; \
}
HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED)
HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE)
HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
HANDLE_ATTR_CLASS(External, EXTERNAL)
HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
HANDLE_ATTR_CLASS(NoPass, NOPASS)
HANDLE_ATTR_CLASS(Optional, OPTIONAL)
HANDLE_ATTR_CLASS(Parameter, PARAMETER)
HANDLE_ATTR_CLASS(Pointer, POINTER)
HANDLE_ATTR_CLASS(Protected, PROTECTED)
HANDLE_ATTR_CLASS(Save, SAVE)
HANDLE_ATTR_CLASS(Target, TARGET)
HANDLE_ATTR_CLASS(Value, VALUE)
HANDLE_ATTR_CLASS(Volatile, VOLATILE)
#undef HANDLE_ATTR_CLASS
protected:
std::optional<Attrs> attrs_;
Attr AccessSpecToAttr(const parser::AccessSpec &x) {
switch (x.v) {
case parser::AccessSpec::Kind::Public: return Attr::PUBLIC;
case parser::AccessSpec::Kind::Private: return Attr::PRIVATE;
}
common::die("unreachable"); // suppress g++ warning
}
Attr IntentSpecToAttr(const parser::IntentSpec &x) {
switch (x.v) {
case parser::IntentSpec::Intent::In: return Attr::INTENT_IN;
case parser::IntentSpec::Intent::Out: return Attr::INTENT_OUT;
case parser::IntentSpec::Intent::InOut: return Attr::INTENT_INOUT;
}
common::die("unreachable"); // suppress g++ warning
}
private:
MaybeExpr bindName_; // from BIND(C, NAME="...")
std::optional<SourceName> passName_; // from PASS(...)
};
// Find and create types from declaration-type-spec nodes.
class DeclTypeSpecVisitor : public AttrsVisitor {
public:
explicit DeclTypeSpecVisitor() {}
using AttrsVisitor::Post;
using AttrsVisitor::Pre;
void Post(const parser::IntrinsicTypeSpec::DoublePrecision &);
void Post(const parser::IntrinsicTypeSpec::DoubleComplex &);
void Post(const parser::DeclarationTypeSpec::ClassStar &);
void Post(const parser::DeclarationTypeSpec::TypeStar &);
bool Pre(const parser::TypeGuardStmt &);
void Post(const parser::TypeGuardStmt &);
void Post(const parser::TypeSpec &);
protected:
struct State {
bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true
const DeclTypeSpec *declTypeSpec{nullptr};
struct {
DerivedTypeSpec *type{nullptr};
DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived};
} derived;
};
// Walk the parse tree of a type spec and return the DeclTypeSpec for it.
template<typename T> const DeclTypeSpec *ProcessTypeSpec(const T &x) {
auto save{common::ScopedSet(state_, State{})};
BeginDeclTypeSpec();
Walk(x);
const auto *type{GetDeclTypeSpec()};
EndDeclTypeSpec();
return type;
}
const DeclTypeSpec *GetDeclTypeSpec();
void BeginDeclTypeSpec();
void EndDeclTypeSpec();
void SetDeclTypeSpec(const DeclTypeSpec &);
void SetDeclTypeSpecCategory(DeclTypeSpec::Category);
DeclTypeSpec::Category GetDeclTypeSpecCategory() const {
return state_.derived.category;
}
KindExpr GetKindParamExpr(
TypeCategory, const std::optional<parser::KindSelector> &);
private:
State state_;
void MakeNumericType(TypeCategory, int kind);
};
// Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
class ImplicitRulesVisitor : public DeclTypeSpecVisitor {
public:
using DeclTypeSpecVisitor::Post;
using DeclTypeSpecVisitor::Pre;
using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
void Post(const parser::ParameterStmt &);
bool Pre(const parser::ImplicitStmt &);
bool Pre(const parser::LetterSpec &);
bool Pre(const parser::ImplicitSpec &);
void Post(const parser::ImplicitSpec &);
ImplicitRules &implicitRules() { return *implicitRules_; }
const ImplicitRules &implicitRules() const { return *implicitRules_; }
bool isImplicitNoneType() const {
return implicitRules().isImplicitNoneType();
}
bool isImplicitNoneExternal() const {
return implicitRules().isImplicitNoneExternal();
}
protected:
void BeginScope(const Scope &);
void SetScope(const Scope &);
private:
// scope -> implicit rules for that scope
std::map<const Scope *, ImplicitRules> implicitRulesMap_;
// implicit rules in effect for current scope
ImplicitRules *implicitRules_{nullptr};
const SourceName *prevImplicit_{nullptr};
const SourceName *prevImplicitNone_{nullptr};
const SourceName *prevImplicitNoneType_{nullptr};
const SourceName *prevParameterStmt_{nullptr};
bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
};
// Track array specifications. They can occur in AttrSpec, EntityDecl,
// ObjectDecl, DimensionStmt, CommonBlockObject, or BasedPointerStmt.
// 1. INTEGER, DIMENSION(10) :: x
// 2. INTEGER :: x(10)
// 3. ALLOCATABLE :: x(:)
// 4. DIMENSION :: x(10)
// 5. COMMON x(10)
// 6. TODO: BasedPointerStmt
class ArraySpecVisitor : public virtual BaseVisitor {
public:
void Post(const parser::ArraySpec &);
void Post(const parser::ComponentArraySpec &);
void Post(const parser::CoarraySpec &);
void Post(const parser::AttrSpec &) { PostAttrSpec(); }
void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
protected:
const ArraySpec &arraySpec();
const ArraySpec &coarraySpec();
void BeginArraySpec();
void EndArraySpec();
void ClearArraySpec() { arraySpec_.clear(); }
void ClearCoarraySpec() { coarraySpec_.clear(); }
private:
// arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec
ArraySpec arraySpec_;
ArraySpec coarraySpec_;
// When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
// into attrArraySpec_
ArraySpec attrArraySpec_;
ArraySpec attrCoarraySpec_;
void PostAttrSpec();
};
// Manage a stack of Scopes
class ScopeHandler : public ImplicitRulesVisitor {
public:
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
Scope &currScope() { return *currScope_; }
// The enclosing scope, skipping blocks and derived types.
Scope &InclusiveScope();
// The global scope, containing program units.
Scope &GlobalScope();
// Create a new scope and push it on the scope stack.
void PushScope(Scope::Kind kind, Symbol *symbol);
void PushScope(Scope &scope);
void PopScope();
void SetScope(Scope &);
template<typename T> bool Pre(const parser::Statement<T> &x) {
messageHandler().set_currStmtSource(&x.source);
currScope_->AddSourceRange(x.source);
return true;
}
template<typename T> void Post(const parser::Statement<T> &) {
messageHandler().set_currStmtSource(nullptr);
}
// Special messages: already declared; referencing symbol's declaration;
// about a type; two names & locations
void SayAlreadyDeclared(const SourceName &, Symbol &);
void SayAlreadyDeclared(const parser::Name &, Symbol &);
void SayWithDecl(const parser::Name &, Symbol &, MessageFixedText &&);
void SayDerivedType(const SourceName &, MessageFixedText &&, const Scope &);
void Say2(const SourceName &, MessageFixedText &&, const SourceName &,
MessageFixedText &&);
void Say2(
const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&);
void Say2(
const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&);
// Search for symbol by name in current and containing scopes
Symbol *FindSymbol(const parser::Name &);
Symbol *FindSymbol(const Scope &, const parser::Name &);
// Search for name only in scope, not in enclosing scopes.
Symbol *FindInScope(const Scope &, const parser::Name &);
Symbol *FindInScope(const Scope &, const SourceName &);
// Search for name in a derived type scope and its parents.
Symbol *FindInTypeOrParents(const Scope &, SourceName);
Symbol *FindInTypeOrParents(const Scope &, const parser::Name &);
Symbol *FindInTypeOrParents(const parser::Name &);
void EraseSymbol(const parser::Name &);
void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); }
// Record that name resolved to symbol
// Make a new symbol with the name and attrs of an existing one
Symbol &CopySymbol(const Symbol &);
// Make symbols in the current or named scope
Symbol &MakeSymbol(Scope &, const SourceName &, Attrs);
Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{});
Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{});
template<typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const parser::Name &name, D &&details) {
return MakeSymbol(name, Attrs{}, std::move(details));
}
template<typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const parser::Name &name, const Attrs &attrs, D &&details) {
return Resolve(name, MakeSymbol(name.source, attrs, std::move(details)));
}
template<typename D>
common::IfNoLvalue<Symbol &, D> MakeSymbol(
const SourceName &name, const Attrs &attrs, D &&details) {
// Note: don't use FindSymbol here. If this is a derived type scope,
// we want to detect whether the name is already declared as a component.
auto *symbol{FindInScope(currScope(), name)};
if (!symbol) {
symbol = &MakeSymbol(name, attrs);
symbol->set_details(std::move(details));
return *symbol;
}
if constexpr (std::is_same_v<DerivedTypeDetails, D>) {
if (auto *d{symbol->detailsIf<GenericDetails>()}) {
// derived type with same name as a generic
auto *derivedType{d->derivedType()};
if (!derivedType) {
derivedType =
&currScope().MakeSymbol(name, attrs, std::move(details));
d->set_derivedType(*derivedType);
} else {
SayAlreadyDeclared(name, *derivedType);
}
return *derivedType;
}
}
if (symbol->CanReplaceDetails(details)) {
// update the existing symbol
symbol->attrs() |= attrs;
symbol->set_details(std::move(details));
return *symbol;
} else if constexpr (std::is_same_v<UnknownDetails, D>) {
symbol->attrs() |= attrs;
return *symbol;
} else {
SayAlreadyDeclared(name, *symbol);
// replace the old symbol with a new one with correct details
EraseSymbol(*symbol);
return MakeSymbol(name, attrs, std::move(details));
}
}
protected:
// Apply the implicit type rules to this symbol.
void ApplyImplicitRules(Symbol &);
const DeclTypeSpec *GetImplicitType(Symbol &);
bool ConvertToObjectEntity(Symbol &);
bool ConvertToProcEntity(Symbol &);
const DeclTypeSpec &MakeNumericType(
TypeCategory, const std::optional<parser::KindSelector> &);
const DeclTypeSpec &MakeLogicalType(
const std::optional<parser::KindSelector> &);
private:
Scope *currScope_{nullptr};
};
class ModuleVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::AccessStmt &);
bool Pre(const parser::Only &);
bool Pre(const parser::Rename::Names &);
bool Pre(const parser::Rename::Operators &);
bool Pre(const parser::UseStmt &);
void Post(const parser::UseStmt &);
void BeginModule(const parser::Name &, bool isSubmodule);
bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &);
void ApplyDefaultAccess();
private:
// The default access spec for this module.
Attr defaultAccess_{Attr::PUBLIC};
// The location of the last AccessStmt without access-ids, if any.
const SourceName *prevAccessStmt_{nullptr};
// The scope of the module during a UseStmt
const Scope *useModuleScope_{nullptr};
Symbol &SetAccess(const SourceName &, Attr);
void AddUse(const parser::Rename::Names &);
void AddUse(const parser::Rename::Operators &);
Symbol *AddUse(const SourceName &);
// A rename in a USE statement: local => use
struct SymbolRename {
Symbol *local{nullptr};
Symbol *use{nullptr};
};
// Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol
SymbolRename AddUse(const SourceName &localName, const SourceName &useName);
void AddUse(const SourceName &, Symbol &localSymbol, const Symbol &useSymbol);
Scope *FindModule(const parser::Name &, Scope *ancestor = nullptr);
};
class InterfaceVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::InterfaceStmt &);
void Post(const parser::EndInterfaceStmt &);
bool Pre(const parser::GenericSpec &);
bool Pre(const parser::ProcedureStmt &);
void Post(const parser::GenericStmt &);
bool inInterfaceBlock() const { return inInterfaceBlock_; }
bool isGeneric() const { return genericSymbol_ != nullptr; }
bool isAbstract() const { return isAbstract_; }
protected:
GenericDetails &GetGenericDetails();
// Add to generic the symbol for the subprogram with the same name
void CheckGenericProcedures(Symbol &);
private:
bool inInterfaceBlock_{false}; // set when in interface block
bool isAbstract_{false}; // set when in abstract interface block
Symbol *genericSymbol_{nullptr}; // set in generic interface block
using ProcedureKind = parser::ProcedureStmt::Kind;
// mapping of generic to its specific proc names and kinds
std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>
specificProcs_;
void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind);
void ResolveSpecificsInGeneric(Symbol &generic);
};
class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor {
public:
bool HandleStmtFunction(const parser::StmtFunctionStmt &);
void Post(const parser::StmtFunctionStmt &);
bool Pre(const parser::SubroutineStmt &);
void Post(const parser::SubroutineStmt &);
bool Pre(const parser::FunctionStmt &);
void Post(const parser::FunctionStmt &);
bool Pre(const parser::InterfaceBody::Subroutine &);
void Post(const parser::InterfaceBody::Subroutine &);
bool Pre(const parser::InterfaceBody::Function &);
void Post(const parser::InterfaceBody::Function &);
bool Pre(const parser::Suffix &);
bool Pre(const parser::PrefixSpec &);
void Post(const parser::ImplicitPart &);
bool BeginSubprogram(
const parser::Name &, Symbol::Flag, bool hasModulePrefix = false);
void EndSubprogram();
protected:
// Set when we see a stmt function that is really an array element assignment
bool badStmtFuncFound_{false};
private:
// Info about the current function: parse tree of the type in the PrefixSpec;
// name and symbol of the function result from the Suffix; source location.
struct {
const parser::DeclarationTypeSpec *parsedType{nullptr};
const parser::Name *resultName{nullptr};
Symbol *resultSymbol{nullptr};
const SourceName *source{nullptr};
} funcInfo_;
// Create a subprogram symbol in the current scope and push a new scope.
Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag);
Symbol *GetSpecificFromGeneric(const parser::Name &);
SubprogramDetails &PostSubprogramStmt(const parser::Name &);
};
class DeclarationVisitor : public ArraySpecVisitor,
public virtual ScopeHandler {
public:
using ArraySpecVisitor::Post;
using ScopeHandler::Post;
using ScopeHandler::Pre;
void Post(const parser::EntityDecl &);
void Post(const parser::ObjectDecl &);
void Post(const parser::PointerDecl &);
bool Pre(const parser::BindStmt &) { return BeginAttrs(); }
void Post(const parser::BindStmt &) { EndAttrs(); }
bool Pre(const parser::BindEntity &);
bool Pre(const parser::NamedConstantDef &);
bool Pre(const parser::NamedConstant &);
bool Pre(const parser::AsynchronousStmt &);
bool Pre(const parser::ContiguousStmt &);
bool Pre(const parser::ExternalStmt &);
bool Pre(const parser::IntentStmt &);
bool Pre(const parser::IntrinsicStmt &);
bool Pre(const parser::OptionalStmt &);
bool Pre(const parser::ProtectedStmt &);
bool Pre(const parser::ValueStmt &);
bool Pre(const parser::VolatileStmt &);
bool Pre(const parser::AllocatableStmt &) {
objectDeclAttr_ = Attr::ALLOCATABLE;
return true;
}
void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
bool Pre(const parser::TargetStmt &x) {
objectDeclAttr_ = Attr::TARGET;
return true;
}
void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
void Post(const parser::DimensionStmt::Declaration &);
void Post(const parser::CodimensionDecl &);
bool Pre(const parser::TypeDeclarationStmt &) { return BeginDecl(); }
void Post(const parser::TypeDeclarationStmt &) { EndDecl(); }
void Post(const parser::IntegerTypeSpec &);
void Post(const parser::IntrinsicTypeSpec::Real &);
void Post(const parser::IntrinsicTypeSpec::Complex &);
void Post(const parser::IntrinsicTypeSpec::Logical &);
void Post(const parser::IntrinsicTypeSpec::Character &);
void Post(const parser::IntrinsicTypeSpec::NCharacter &);
void Post(const parser::CharSelector::LengthAndKind &);
void Post(const parser::CharLength &);
void Post(const parser::LengthSelector &);
bool Pre(const parser::KindParam &);
bool Pre(const parser::DeclarationTypeSpec::Type &);
bool Pre(const parser::DeclarationTypeSpec::Class &);
bool Pre(const parser::DeclarationTypeSpec::Record &);
void Post(const parser::DerivedTypeSpec &);
bool Pre(const parser::DerivedTypeDef &);
bool Pre(const parser::DerivedTypeStmt &x);
void Post(const parser::DerivedTypeStmt &x);
bool Pre(const parser::TypeParamDefStmt &x) { return BeginDecl(); }
void Post(const parser::TypeParamDefStmt &);
bool Pre(const parser::TypeAttrSpec::Extends &x);
bool Pre(const parser::PrivateStmt &x);
bool Pre(const parser::SequenceStmt &x);
bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
void Post(const parser::ComponentDefStmt &) { EndDecl(); }
void Post(const parser::ComponentDecl &);
bool Pre(const parser::ProcedureDeclarationStmt &);
void Post(const parser::ProcedureDeclarationStmt &);
bool Pre(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcComponentDefStmt &);
bool Pre(const parser::ProcPointerInit &);
bool Pre(const parser::ProcInterface &);
void Post(const parser::ProcInterface &);
void Post(const parser::ProcDecl &);
bool Pre(const parser::TypeBoundProcedurePart &);
void Post(const parser::ContainsStmt &);
bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); }
void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); }
void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &);
void Post(const parser::TypeBoundProcedureStmt::WithInterface &);
void Post(const parser::FinalProcedureStmt &);
bool Pre(const parser::TypeBoundGenericStmt &);
bool Pre(const parser::AllocateStmt &);
void Post(const parser::AllocateStmt &);
bool Pre(const parser::StructureConstructor &);
bool Pre(const parser::NamelistStmt::Group &);
bool Pre(const parser::IoControlSpec &);
bool Pre(const parser::CommonStmt::Block &);
void Post(const parser::CommonStmt::Block &);
bool Pre(const parser::CommonBlockObject &);
void Post(const parser::CommonBlockObject &);
bool Pre(const parser::SaveStmt &);
protected:
bool BeginDecl();
void EndDecl();
Symbol &DeclareObjectEntity(const parser::Name &, Attrs);
// Declare a LOCAL/LOCAL_INIT entity. If there isn't a type specified
// it comes from the entity in the containing scope, or implicit rules.
// Return pointer to the new symbol, or nullptr on error.
Symbol *DeclareLocalEntity(const parser::Name &);
// Declare a statement entity (e.g., an implied DO loop index).
// If there isn't a type specified, implicit rules apply.
// Return pointer to the new symbol, or nullptr on error.
Symbol *DeclareStatementEntity(
const parser::Name &, const std::optional<parser::IntegerTypeSpec> &);
bool CheckUseError(const parser::Name &);
void CheckAccessibility(const SourceName &, bool, Symbol &);
bool CheckAccessibleComponent(const SourceName &, const Symbol &);
void CheckCommonBlocks();
void CheckSaveStmts();
bool CheckNotInBlock(const char *);
bool NameIsKnownOrIntrinsic(const parser::Name &);
// Each of these returns a pointer to a resolved Name (i.e. with symbol)
// or nullptr in case of error.
const parser::Name *ResolveStructureComponent(
const parser::StructureComponent &);
const parser::Name *ResolveDesignator(const parser::Designator &);
const parser::Name *ResolveDataRef(const parser::DataRef &);
const parser::Name *ResolveVariable(const parser::Variable &);
const parser::Name *ResolveName(const parser::Name &);
private:
// The attribute corresponding to the statement containing an ObjectDecl
std::optional<Attr> objectDeclAttr_;
// Info about current character type while walking DeclTypeSpec
struct {
std::optional<ParamValue> length;
std::optional<KindExpr> kind;
} charInfo_;
// Info about current derived type while walking DerivedTypeDef
struct {
const parser::Name *extends{nullptr}; // EXTENDS(name)
bool privateComps{false}; // components are private by default
bool privateBindings{false}; // bindings are private by default
bool sawContains{false}; // currently processing bindings
bool sequence{false}; // is a sequence type
const Symbol *type{nullptr}; // derived type being defined
} derivedTypeInfo_;
// Info about common blocks in the current scope
struct {
Symbol *curr{nullptr}; // common block currently being processed
std::set<SourceName> names; // names in any common block of scope
} commonBlockInfo_;
// Info about about SAVE statements and attributes in current scope
struct {
const SourceName *saveAll{nullptr}; // "SAVE" without entity list
std::set<SourceName> entities; // names of entities with save attr
std::set<SourceName> commons; // names of common blocks with save attr
} saveInfo_;
// In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
// the interface name, if any.
const parser::Name *interfaceName_{nullptr};
bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
Symbol &HandleAttributeStmt(Attr, const parser::Name &);
Symbol &DeclareUnknownEntity(const parser::Name &, Attrs);
Symbol &DeclareProcEntity(const parser::Name &, Attrs, const ProcInterface &);
void SetType(const parser::Name &, const DeclTypeSpec &);
const Symbol *ResolveDerivedType(const parser::Name &);
bool CanBeTypeBoundProc(const Symbol &);
Symbol *FindExplicitInterface(const parser::Name &);
Symbol *MakeTypeSymbol(const SourceName &, Details &&);
Symbol *MakeTypeSymbol(const parser::Name &, Details &&);
bool OkToAddComponent(const parser::Name &, const Symbol * = nullptr);
ParamValue GetParamValue(const parser::TypeParamValue &);
Symbol &MakeCommonBlockSymbol(const parser::Name &);
void CheckCommonBlockDerivedType(const SourceName &, const Symbol &);
std::optional<MessageFixedText> CheckSaveAttr(const Symbol &);
Attrs HandleSaveName(const SourceName &, Attrs);
void AddSaveName(std::set<SourceName> &, const SourceName &);
void SetSaveAttr(Symbol &);
bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &);
const parser::Name *FindComponent(const parser::Name *, const parser::Name &);
// Declare an object or procedure entity.
// T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails
template<typename T>
Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
Symbol &symbol{MakeSymbol(name, attrs)};
if (symbol.has<T>()) {
// OK
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(T{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(T{std::move(*details)});
} else if (std::is_same_v<EntityDetails, T> &&
(symbol.has<ObjectEntityDetails>() ||
symbol.has<ProcEntityDetails>())) {
// OK
} else if (auto *details{symbol.detailsIf<UseDetails>()}) {
Say(name.source,
"'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
name.source, details->module().name());
} else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) {
if (details->kind() == SubprogramKind::Module) {
Say2(name,
"Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
symbol, "Module procedure definition"_en_US);
} else if (details->kind() == SubprogramKind::Internal) {
Say2(name,
"Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
symbol, "Internal procedure definition"_en_US);
} else {
CHECK(!"unexpected kind");
}
} else if (std::is_same_v<ObjectEntityDetails, T> &&
symbol.has<ProcEntityDetails>()) {
SayWithDecl(
name, symbol, "'%s' is already declared as a procedure"_err_en_US);
} else if (std::is_same_v<ProcEntityDetails, T> &&
symbol.has<ObjectEntityDetails>()) {
SayWithDecl(
name, symbol, "'%s' is already declared as an object"_err_en_US);
} else {
SayAlreadyDeclared(name, symbol);
}
return symbol;
}
};
// Resolve construct entities and statement entities.
// Check that construct names don't conflict with other names.
class ConstructVisitor : public DeclarationVisitor {
public:
bool Pre(const parser::ConcurrentHeader &);
void Post(const parser::ConcurrentHeader &);
bool Pre(const parser::LocalitySpec::Local &);
bool Pre(const parser::LocalitySpec::LocalInit &);
bool Pre(const parser::LocalitySpec::Shared &);
bool Pre(const parser::AcSpec &);
bool Pre(const parser::AcImpliedDo &);
bool Pre(const parser::DataImpliedDo &);
bool Pre(const parser::DataStmtObject &);
bool Pre(const parser::DoConstruct &);
void Post(const parser::DoConstruct &);
void Post(const parser::ConcurrentControl &);
bool Pre(const parser::ForallConstruct &);
void Post(const parser::ForallConstruct &);
bool Pre(const parser::ForallStmt &);
void Post(const parser::ForallStmt &);
bool Pre(const parser::BlockStmt &);
bool Pre(const parser::EndBlockStmt &);
void Post(const parser::Selector &);
bool Pre(const parser::AssociateStmt &);
void Post(const parser::EndAssociateStmt &);
void Post(const parser::Association &);
void Post(const parser::SelectTypeStmt &);
bool Pre(const parser::SelectTypeConstruct::TypeCase &);
void Post(const parser::SelectTypeConstruct::TypeCase &);
void Post(const parser::TypeGuardStmt::Guard &);
bool Pre(const parser::ChangeTeamStmt &);
void Post(const parser::EndChangeTeamStmt &);
void Post(const parser::CoarrayAssociation &);
// Definitions of construct names
bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::LabelDoStmt &x) { common::die("should not happen"); }
bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectRankStmt &x) {
return CheckDef(std::get<0>(x.t));
}
bool Pre(const parser::SelectTypeStmt &x) {
return CheckDef(std::get<0>(x.t));
}
// References to construct names
void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); }
void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndForallStmt &x) { CheckRef(x.v); }
void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); }
void Post(const parser::EndDoStmt &x) { CheckRef(x.v); }
void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); }
void Post(const parser::ElseStmt &x) { CheckRef(x.v); }
void Post(const parser::EndIfStmt &x) { CheckRef(x.v); }
void Post(const parser::CaseStmt &x) { CheckRef(x.t); }
void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); }
void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); }
void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); }
void Post(const parser::CycleStmt &x) { CheckRef(x.v); }
void Post(const parser::ExitStmt &x) { CheckRef(x.v); }
private:
// R1105 selector -> expr | variable
// expr is set in either case unless there were errors
struct Selector {
Selector() {}
Selector(const parser::CharBlock &source, MaybeExpr &&expr,
const parser::Name *variable = nullptr)
: source{source}, expr{std::move(expr)}, variable{variable} {}
operator bool() const { return expr.has_value(); }
parser::CharBlock source;
MaybeExpr expr;
const parser::Name *variable{nullptr};
};
// association -> [associate-name =>] selector
struct {
const parser::Name *name{nullptr};
Selector selector;
} association_;
template<typename T> bool CheckDef(const T &t) {
return CheckDef(std::get<std::optional<parser::Name>>(t));
}
template<typename T> void CheckRef(const T &t) {
CheckRef(std::get<std::optional<parser::Name>>(t));
}
bool CheckDef(const std::optional<parser::Name> &);
void CheckRef(const std::optional<parser::Name> &);
const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&);
const DeclTypeSpec &ToDeclTypeSpec(
evaluate::DynamicType &&, SubscriptIntExpr &&length);
Symbol *MakeAssocEntity();
void SetTypeFromAssociation(Symbol &);
void SetAttrsFromAssociation(Symbol &);
Selector ResolveSelector(const parser::Selector &);
};
// Walk the parse tree and resolve names to symbols.
class ResolveNamesVisitor : public virtual ScopeHandler,
public ModuleVisitor,
public SubprogramVisitor,
public ConstructVisitor {
public:
using ArraySpecVisitor::Post;
using ConstructVisitor::Post;
using ConstructVisitor::Pre;
using DeclarationVisitor::Post;
using DeclarationVisitor::Pre;
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
using InterfaceVisitor::Post;
using InterfaceVisitor::Pre;
using ModuleVisitor::Post;
using ModuleVisitor::Pre;
using ScopeHandler::Post;
using ScopeHandler::Pre;
using SubprogramVisitor::Post;
using SubprogramVisitor::Pre;
ResolveNamesVisitor(SemanticsContext &context) {
set_context(context);
set_this(this);
PushScope(context.globalScope());
}
// Default action for a parse tree node is to visit children.
template<typename T> bool Pre(const T &) { return true; }
template<typename T> void Post(const T &) {}
void Post(const parser::SpecificationPart &);
void Post(const parser::Program &);
bool Pre(const parser::ImplicitStmt &);
void Post(const parser::PointerObject &);
void Post(const parser::AllocateObject &);
bool Pre(const parser::PointerAssignmentStmt &);
void Post(const parser::Designator &);
template<typename A, typename B>
void Post(const parser::LoopBounds<A, B> &x) {
ResolveName(*parser::Unwrap<parser::Name>(x.name));
}
void Post(const parser::ProcComponentRef &);
bool Pre(const parser::FunctionReference &);
bool Pre(const parser::CallStmt &);
bool Pre(const parser::ImportStmt &);
void Post(const parser::TypeGuardStmt &);
bool Pre(const parser::StmtFunctionStmt &);
bool Pre(const parser::DefinedOpName &);
bool Pre(const parser::ProgramUnit &);
// These nodes should never be reached: they are handled in ProgramUnit
bool Pre(const parser::MainProgram &) { DIE("unreachable"); }
bool Pre(const parser::FunctionSubprogram &) { DIE("unreachable"); }
bool Pre(const parser::SubroutineSubprogram &) { DIE("unreachable"); }
bool Pre(const parser::SeparateModuleSubprogram &) { DIE("unreachable"); }
bool Pre(const parser::Module &) { DIE("unreachable"); }
bool Pre(const parser::Submodule &) { DIE("unreachable"); }
bool Pre(const parser::BlockData &) { DIE("unreachable"); }
private:
// Kind of procedure we are expecting to see in a ProcedureDesignator
std::optional<Symbol::Flag> expectedProcFlag_;
const SourceName *prevImportStmt_{nullptr};
void CheckImports();
void CheckImport(const SourceName &, const SourceName &);
void HandleCall(Symbol::Flag, const parser::Call &);
void HandleProcedureName(Symbol::Flag, const parser::Name &);
bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag);
void ResolveExecutionParts(const ProgramTree &);
void AddSubpNames(const ProgramTree &);
bool BeginScope(const ProgramTree &);
void ResolveSpecificationParts(ProgramTree &);
};
// ImplicitRules implementation
bool ImplicitRules::isImplicitNoneType() const {
if (isImplicitNoneType_.has_value()) {
return isImplicitNoneType_.value();
} else if (inheritFromParent_) {
return parent_->isImplicitNoneType();
} else {
return false; // default if not specified
}
}
bool ImplicitRules::isImplicitNoneExternal() const {
if (isImplicitNoneExternal_.has_value()) {
return isImplicitNoneExternal_.value();
} else if (inheritFromParent_) {
return parent_->isImplicitNoneExternal();
} else {
return false; // default if not specified
}
}
const DeclTypeSpec *ImplicitRules::GetType(char ch) const {
if (auto it{map_.find(ch)}; it != map_.end()) {
return it->second;
} else if (inheritFromParent_) {
return parent_->GetType(ch);
} else if (ch >= 'i' && ch <= 'n') {
return &context_.MakeNumericType(TypeCategory::Integer);
} else if (ch >= 'a' && ch <= 'z') {
return &context_.MakeNumericType(TypeCategory::Real);
} else {
return nullptr;
}
}
// isDefault is set when we are applying the default rules, so it is not
// an error if the type is already set.
void ImplicitRules::SetType(const DeclTypeSpec &type, parser::Location lo,
parser::Location hi, bool isDefault) {
for (char ch = *lo; ch; ch = ImplicitRules::Incr(ch)) {
auto res{map_.emplace(ch, &type)};
if (!res.second && !isDefault) {
context_.Say(parser::CharBlock{lo},
"More than one implicit type specified for '%c'"_err_en_US, ch);
}
if (ch == *hi) {
break;
}
}
}
// Return the next char after ch in a way that works for ASCII or EBCDIC.
// Return '\0' for the char after 'z'.
char ImplicitRules::Incr(char ch) {
switch (ch) {
case 'i': return 'j';
case 'r': return 's';
case 'z': return '\0';
default: return ch + 1;
}
}
std::ostream &operator<<(std::ostream &o, const ImplicitRules &implicitRules) {
o << "ImplicitRules:\n";
for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
ShowImplicitRule(o, implicitRules, ch);
}
ShowImplicitRule(o, implicitRules, '_');
ShowImplicitRule(o, implicitRules, '$');
ShowImplicitRule(o, implicitRules, '@');
return o;
}
void ShowImplicitRule(
std::ostream &o, const ImplicitRules &implicitRules, char ch) {
auto it{implicitRules.map_.find(ch)};
if (it != implicitRules.map_.end()) {
o << " " << ch << ": " << *it->second << '\n';
}
}
template<typename T> void BaseVisitor::Walk(const T &x) {
parser::Walk(x, *this_);
}
void BaseVisitor::set_context(SemanticsContext &context) {
context_ = &context;
messageHandler_.set_context(context);
}
void BaseVisitor::MakePlaceholder(
const parser::Name &name, MiscDetails::Kind kind) {
if (!name.symbol) {
name.symbol = &context_->globalScope().MakeSymbol(
name.source, Attrs{}, MiscDetails{kind});
}
}
// AttrsVisitor implementation
bool AttrsVisitor::BeginAttrs() {
CHECK(!attrs_);
attrs_ = std::make_optional<Attrs>();
return true;
}
Attrs AttrsVisitor::GetAttrs() {
CHECK(attrs_);
return *attrs_;
}
Attrs AttrsVisitor::EndAttrs() {
CHECK(attrs_);
Attrs result{*attrs_};
attrs_.reset();
passName_.reset();
bindName_.reset();
return result;
}
bool AttrsVisitor::SetPassNameOn(Symbol &symbol) {
if (!passName_) {
return false;
}
std::visit(
common::visitors{
[&](ProcEntityDetails &x) { x.set_passName(*passName_); },
[&](ProcBindingDetails &x) { x.set_passName(*passName_); },
[](auto &) { common::die("unexpected pass name"); },
},
symbol.details());
return true;
}
bool AttrsVisitor::SetBindNameOn(Symbol &symbol) {
if (!bindName_) {
return false;
}
std::visit(
common::visitors{
[&](EntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](ObjectEntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](ProcEntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](SubprogramDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](CommonBlockDetails &x) { x.set_bindName(std::move(bindName_)); },
[](auto &) { common::die("unexpected bind name"); },
},
symbol.details());
return true;
}
void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
CHECK(attrs_);
attrs_->set(Attr::BIND_C);
if (x.v) {
bindName_ = EvaluateExpr(*x.v);
}
}
bool AttrsVisitor::Pre(const parser::AccessSpec &x) {
attrs_->set(AccessSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
CHECK(attrs_);
attrs_->set(IntentSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::Pass &x) {
if (x.v) {
passName_ = x.v->source;
MakePlaceholder(*x.v, MiscDetails::Kind::PassName);
} else {
attrs_->set(Attr::PASS);
}
return false;
}
// DeclTypeSpecVisitor implementation
const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() {
return state_.declTypeSpec;
}
void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
CHECK(!state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.expectDeclTypeSpec = true;
}
void DeclTypeSpecVisitor::EndDeclTypeSpec() {
CHECK(state_.expectDeclTypeSpec);
state_ = {};
}
void DeclTypeSpecVisitor::SetDeclTypeSpecCategory(
DeclTypeSpec::Category category) {
CHECK(state_.expectDeclTypeSpec);
state_.derived.category = category;
}
bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
EndDeclTypeSpec();
}
void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) {
// Record the resolved DeclTypeSpec in the parse tree for use by
// expression semantics if the DeclTypeSpec is a valid TypeSpec.
// The grammar ensures that it's an intrinsic or derived type spec,
// not TYPE(*) or CLASS(*) or CLASS(T).
if (const DeclTypeSpec * spec{state_.declTypeSpec}) {
switch (spec->category()) {
case DeclTypeSpec::Numeric:
case DeclTypeSpec::Logical:
case DeclTypeSpec::Character: typeSpec.declTypeSpec = spec; break;
case DeclTypeSpec::TypeDerived:
if (const DerivedTypeSpec * derived{spec->AsDerived()}) {
if (derived->typeSymbol().attrs().test(Attr::ABSTRACT)) {
Say("ABSTRACT derived type may not be used here"_err_en_US);
}
typeSpec.declTypeSpec = spec;
}
break;
default: CRASH_NO_CASE;
}
}
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoublePrecision &) {
MakeNumericType(
TypeCategory::Real, context().defaultKinds().doublePrecisionKind());
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoubleComplex &) {
MakeNumericType(
TypeCategory::Complex, context().defaultKinds().doublePrecisionKind());
}
void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) {
SetDeclTypeSpec(context().MakeNumericType(category, kind));
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) {
SetDeclTypeSpec(context().globalScope().MakeClassStarType());
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) {
SetDeclTypeSpec(context().globalScope().MakeTypeStarType());
}
// Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
// and save it in state_.declTypeSpec.
void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) {
CHECK(state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.declTypeSpec = &declTypeSpec;
}
KindExpr DeclTypeSpecVisitor::GetKindParamExpr(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
return AnalyzeKindSelector(context(), category, kind);
}
// MessageHandler implementation
Message &MessageHandler::Say(MessageFixedText &&msg) {
return context_->Say(*currStmtSource(), std::move(msg));
}
Message &MessageHandler::Say(MessageFormattedText &&msg) {
return context_->Say(*currStmtSource(), std::move(msg));
}
Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) {
return Say(name, std::move(msg), name);
}
Message &MessageHandler::Say(const SourceName &location, MessageFixedText &&msg,
const SourceName &arg1) {
return context_->Say(location, std::move(msg), arg1);
}
Message &MessageHandler::Say(const SourceName &location, MessageFixedText &&msg,
const SourceName &arg1, const SourceName &arg2) {
return context_->Say(location, std::move(msg), arg1, arg2);
}
// ImplicitRulesVisitor implementation
void ImplicitRulesVisitor::Post(const parser::ParameterStmt &x) {
prevParameterStmt_ = currStmtSource();
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
bool res = std::visit(
common::visitors{
[&](const std::list<ImplicitNoneNameSpec> &x) {
return HandleImplicitNone(x);
},
[&](const std::list<parser::ImplicitSpec> &x) {
if (prevImplicitNoneType_) {
Say("IMPLICIT statement after IMPLICIT NONE or "
"IMPLICIT NONE(TYPE) statement"_err_en_US);
return false;
}
return true;
},
},
x.u);
prevImplicit_ = currStmtSource();
return res;
}
bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
auto loLoc{std::get<parser::Location>(x.t)};
auto hiLoc{loLoc};
if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) {
hiLoc = *hiLocOpt;
if (*hiLoc < *loLoc) {
Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
std::string(hiLoc, 1), std::string(loLoc, 1));
return false;
}
}
implicitRules().SetType(*GetDeclTypeSpec(), loLoc, hiLoc);
return false;
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
BeginDeclTypeSpec();
return true;
}
void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
EndDeclTypeSpec();
}
void ImplicitRulesVisitor::SetScope(const Scope &scope) {
implicitRules_ = &implicitRulesMap_.at(&scope);
prevImplicit_ = nullptr;
prevImplicitNone_ = nullptr;
prevImplicitNoneType_ = nullptr;
prevParameterStmt_ = nullptr;
}
void ImplicitRulesVisitor::BeginScope(const Scope &scope) {
// find or create implicit rules for this scope
implicitRulesMap_.try_emplace(&scope, context(), implicitRules_);
SetScope(scope);
}
// TODO: for all of these errors, reference previous statement too
bool ImplicitRulesVisitor::HandleImplicitNone(
const std::list<ImplicitNoneNameSpec> &nameSpecs) {
if (prevImplicitNone_ != nullptr) {
Say("More than one IMPLICIT NONE statement"_err_en_US);
Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
return false;
}
if (prevParameterStmt_ != nullptr) {
Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
return false;
}
prevImplicitNone_ = currStmtSource();
if (nameSpecs.empty()) {
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
return false;
}
} else {
int sawType{0};
int sawExternal{0};
for (const auto noneSpec : nameSpecs) {
switch (noneSpec) {
case ImplicitNoneNameSpec::External:
implicitRules().set_isImplicitNoneExternal(true);
++sawExternal;
break;
case ImplicitNoneNameSpec::Type:
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
return false;
}
++sawType;
break;
}
}
if (sawType > 1) {
Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
if (sawExternal > 1) {
Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
}
return true;
}
// ArraySpecVisitor implementation
void ArraySpecVisitor::Post(const parser::ArraySpec &x) {
CHECK(arraySpec_.empty());
arraySpec_ = AnalyzeArraySpec(context(), x);
}
void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) {
CHECK(arraySpec_.empty());
arraySpec_ = AnalyzeArraySpec(context(), x);
}
void ArraySpecVisitor::Post(const parser::CoarraySpec &x) {
CHECK(coarraySpec_.empty());
coarraySpec_ = AnalyzeCoarraySpec(context(), x);
}
const ArraySpec &ArraySpecVisitor::arraySpec() {
return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
}
const ArraySpec &ArraySpecVisitor::coarraySpec() {
return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_;
}
void ArraySpecVisitor::BeginArraySpec() {
CHECK(arraySpec_.empty());
CHECK(coarraySpec_.empty());
CHECK(attrArraySpec_.empty());
CHECK(attrCoarraySpec_.empty());
}
void ArraySpecVisitor::EndArraySpec() {
CHECK(arraySpec_.empty());
CHECK(coarraySpec_.empty());
attrArraySpec_.clear();
attrCoarraySpec_.clear();
}
void ArraySpecVisitor::PostAttrSpec() {
// Save dimension/codimension from attrs so we can process array/coarray-spec
// on the entity-decl
if (!arraySpec_.empty()) {
CHECK(attrArraySpec_.empty());
attrArraySpec_.splice(attrArraySpec_.cbegin(), arraySpec_);
}
if (!coarraySpec_.empty()) {
CHECK(attrCoarraySpec_.empty());
attrCoarraySpec_.splice(attrCoarraySpec_.cbegin(), coarraySpec_);
}
}
// ScopeHandler implementation
void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) {
SayAlreadyDeclared(name.source, prev);
}
void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) {
auto &msg{
Say(name, "'%s' is already declared in this scoping unit"_err_en_US)};
if (const auto *details{prev.detailsIf<UseDetails>()}) {
msg.Attach(details->location(),
"It is use-associated with '%s' in module '%s'"_err_en_US,
details->symbol().name(), details->module().name());
} else {
msg.Attach(prev.name(), "Previous declaration of '%s'"_en_US, prev.name());
}
context().SetError(prev);
}
void ScopeHandler::SayWithDecl(
const parser::Name &name, Symbol &symbol, MessageFixedText &&msg) {
Say2(name, std::move(msg), symbol,
symbol.test(Symbol::Flag::Implicit) ? "Implicit declaration of '%s'"_en_US
: "Declaration of '%s'"_en_US);
context().SetError(symbol, msg.isFatal());
}
void ScopeHandler::SayDerivedType(
const SourceName &name, MessageFixedText &&msg, const Scope &type) {
const Symbol *typeSymbol{type.GetSymbol()};
CHECK(typeSymbol != nullptr);
Say(name, std::move(msg), name, typeSymbol->name())
.Attach(typeSymbol->name(), "Declaration of derived type '%s'"_en_US,
typeSymbol->name());
}
void ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1,
const SourceName &name2, MessageFixedText &&msg2) {
Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2);
}
void ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1,
Symbol &symbol, MessageFixedText &&msg2) {
Say2(name, std::move(msg1), symbol.name(), std::move(msg2));
context().SetError(symbol, msg1.isFatal());
}
void ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1,
Symbol &symbol, MessageFixedText &&msg2) {
Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2));
context().SetError(symbol, msg1.isFatal());
}
Scope &ScopeHandler::InclusiveScope() {
for (auto *scope{&currScope()};; scope = &scope->parent()) {
if (scope->kind() != Scope::Kind::Block &&
scope->kind() != Scope::Kind::DerivedType) {
return *scope;
}
}
common::die("inclusive scope not found");
}
Scope &ScopeHandler::GlobalScope() {
for (auto *scope = currScope_; scope; scope = &scope->parent()) {
if (scope->kind() == Scope::Kind::Global) {
return *scope;
}
}
common::die("global scope not found");
}
void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) {
PushScope(currScope().MakeScope(kind, symbol));
}
void ScopeHandler::PushScope(Scope &scope) {
currScope_ = &scope;
auto kind{currScope_->kind()};
if (kind != Scope::Kind::Block) {
ImplicitRulesVisitor::BeginScope(scope);
}
if (kind != Scope::Kind::DerivedType) {
if (auto *symbol{scope.symbol()}) {
// Create a dummy symbol so we can't create another one with the same
// name. It might already be there if we previously pushed the scope.
if (!FindInScope(scope, symbol->name())) {
auto &newSymbol{CopySymbol(*symbol)};
if (kind == Scope::Kind::Subprogram) {
newSymbol.set_details(symbol->get<SubprogramDetails>());
} else {
newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
}
}
}
}
}
void ScopeHandler::PopScope() {
// Entities that are not yet classified as objects or procedures are now
// assumed to be objects.
for (auto &pair : currScope()) {
ConvertToObjectEntity(*pair.second);
}
SetScope(currScope_->parent());
}
void ScopeHandler::SetScope(Scope &scope) {
currScope_ = &scope;
ImplicitRulesVisitor::SetScope(InclusiveScope());
}
Symbol *ScopeHandler::FindSymbol(const parser::Name &name) {
return FindSymbol(currScope(), name);
}
Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) {
// Scope::FindSymbol() skips over innermost derived type scopes.
// Ensure that "bare" type parameter names are not overlooked.
if (Symbol * symbol{FindInTypeOrParents(scope, name.source)}) {
if (symbol->has<TypeParamDetails>()) {
return Resolve(name, symbol);
}
}
return Resolve(name, scope.FindSymbol(name.source));
}
Symbol &ScopeHandler::MakeSymbol(
Scope &scope, const SourceName &name, Attrs attrs) {
auto *symbol{FindInScope(scope, name)};
if (symbol) {
symbol->attrs() |= attrs;
} else {
const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})};
CHECK(pair.second); // name was not found, so must be able to add
symbol = pair.first->second;
}
return *symbol;
}
Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) {
return MakeSymbol(currScope(), name, attrs);
}
Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) {
return Resolve(name, MakeSymbol(name.source, attrs));
}
Symbol &ScopeHandler::CopySymbol(const Symbol &symbol) {
CHECK(!FindInScope(currScope(), symbol.name()));
return MakeSymbol(currScope(), symbol.name(), symbol.attrs());
}
// Look for name only in scope, not in enclosing scopes.
Symbol *ScopeHandler::FindInScope(
const Scope &scope, const parser::Name &name) {
return Resolve(name, FindInScope(scope, name.source));
}
Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) {
if (auto it{scope.find(name)}; it != scope.end()) {
return it->second;
} else {
return nullptr;
}
}
// Find a component or type parameter by name in a derived type or its parents.
Symbol *ScopeHandler::FindInTypeOrParents(const Scope &scope, SourceName name) {
if (scope.kind() == Scope::Kind::DerivedType) {
if (Symbol * symbol{FindInScope(scope, name)}) {
return symbol;
}
if (const Scope * parent{scope.GetDerivedTypeParent()}) {
return FindInTypeOrParents(*parent, name);
}
}
return nullptr;
}
Symbol *ScopeHandler::FindInTypeOrParents(
const Scope &scope, const parser::Name &name) {
return Resolve(name, FindInTypeOrParents(scope, name.source));
}
Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) {
return FindInTypeOrParents(currScope(), name);
}
void ScopeHandler::EraseSymbol(const parser::Name &name) {
currScope().erase(name.source);
name.symbol = nullptr;
}
static bool NeedsType(const Symbol &symbol) {
if (symbol.GetType()) {
return false;
}
if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
if (details->interface().symbol()) {
return false; // the interface determines the type
}
if (!symbol.test(Symbol::Flag::Function)) {
return false; // not known to be a function
}
}
return true;
}
void ScopeHandler::ApplyImplicitRules(Symbol &symbol) {
ConvertToObjectEntity(symbol);
if (NeedsType(symbol)) {
if (isImplicitNoneType()) {
Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
} else if (const auto *type{GetImplicitType(symbol)}) {
symbol.SetType(*type);
}
}
}
const DeclTypeSpec *ScopeHandler::GetImplicitType(Symbol &symbol) {
auto &name{symbol.name()};
const auto *type{implicitRules().GetType(name.begin()[0])};
if (type) {
symbol.set(Symbol::Flag::Implicit);
} else {
Say(name, "No explicit type declared for '%s'"_err_en_US);
}
return type;
}
// Convert symbol to be a ObjectEntity or return false if it can't be.
bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) {
if (symbol.has<ObjectEntityDetails>()) {
// nothing to do
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(ObjectEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(ObjectEntityDetails{std::move(*details)});
} else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
return useDetails->symbol().has<ObjectEntityDetails>();
} else {
return false;
}
return true;
}
// Convert symbol to be a ProcEntity or return false if it can't be.
bool ScopeHandler::ConvertToProcEntity(Symbol &symbol) {
if (symbol.has<ProcEntityDetails>()) {
// nothing to do
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(ProcEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(ProcEntityDetails{std::move(*details)});
if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) {
CHECK(!symbol.test(Symbol::Flag::Subroutine));
symbol.set(Symbol::Flag::Function);
}
} else {
return false;
}
return true;
}
const DeclTypeSpec &ScopeHandler::MakeNumericType(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
KindExpr value{GetKindParamExpr(category, kind)};
if (auto known{evaluate::ToInt64(value)}) {
return context().MakeNumericType(category, static_cast<int>(*known));
} else {
return currScope_->MakeNumericType(category, std::move(value));
}
}
const DeclTypeSpec &ScopeHandler::MakeLogicalType(
const std::optional<parser::KindSelector> &kind) {
KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)};
if (auto known{evaluate::ToInt64(value)}) {
return context().MakeLogicalType(static_cast<int>(*known));
} else {
return currScope_->MakeLogicalType(std::move(value));
}
}
// ModuleVisitor implementation
bool ModuleVisitor::Pre(const parser::Only &x) {
std::visit(
common::visitors{
[&](const Indirection<parser::GenericSpec> &generic) {
auto info{GenericSpecInfo{generic.value()}};
info.Resolve(AddUse(info.symbolName()));
},
[&](const parser::Name &name) { Resolve(name, AddUse(name.source)); },
[&](const parser::Rename &rename) {
std::visit(
common::visitors{
[&](const parser::Rename::Names &names) { AddUse(names); },
[&](const parser::Rename::Operators &ops) { AddUse(ops); },
},
rename.u);
},
},
x.u);
return false;
}
bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
AddUse(x);
return false;
}
bool ModuleVisitor::Pre(const parser::Rename::Operators &x) {
AddUse(x);
return false;
}
// Set useModuleScope_ to the Scope of the module being used.
bool ModuleVisitor::Pre(const parser::UseStmt &x) {
useModuleScope_ = FindModule(x.moduleName);
return useModuleScope_ != nullptr;
}
void ModuleVisitor::Post(const parser::UseStmt &x) {
if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) {
// Not a use-only: collect the names that were used in renames,
// then add a use for each public name that was not renamed.
std::set<SourceName> useNames;
for (const auto &rename : *list) {
std::visit(
common::visitors{
[&](const parser::Rename::Names &names) {
useNames.insert(std::get<1>(names.t).source);
},
[&](const parser::Rename::Operators &ops) {
useNames.insert(std::get<1>(ops.t).v.source);
},
},
rename.u);
}
for (const auto &[name, symbol] : *useModuleScope_) {
if (symbol->attrs().test(Attr::PUBLIC) &&
!symbol->detailsIf<MiscDetails>()) {
if (useNames.count(name) == 0) {
auto *localSymbol{FindInScope(currScope(), name)};
if (!localSymbol) {
localSymbol = &CopySymbol(*symbol);
}
AddUse(x.moduleName.source, *localSymbol, *symbol);
}
}
}
}
useModuleScope_ = nullptr;
}
void ModuleVisitor::AddUse(const parser::Rename::Names &names) {
const auto &localName{std::get<0>(names.t)};
const auto &useName{std::get<1>(names.t)};
SymbolRename rename{AddUse(localName.source, useName.source)};
Resolve(useName, rename.use);
Resolve(localName, rename.local);
}
void ModuleVisitor::AddUse(const parser::Rename::Operators &ops) {
const parser::DefinedOpName &local{std::get<0>(ops.t)};
const parser::DefinedOpName &use{std::get<1>(ops.t)};
GenericSpecInfo localInfo{local};
GenericSpecInfo useInfo{use};
if (IsInstrinsicOperator(context(), local.v.source)) {
Say(local.v,
"Intrinsic operator '%s' may not be used as a defined operator"_err_en_US);
} else if (IsLogicalConstant(context(), local.v.source)) {
Say(local.v,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
} else {
SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())};
useInfo.Resolve(rename.use);
localInfo.Resolve(rename.local);
}
}
Symbol *ModuleVisitor::AddUse(const SourceName &useName) {
return AddUse(useName, useName).use;
}
ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
const SourceName &localName, const SourceName &useName) {
if (!useModuleScope_) {
return {}; // error occurred finding module
}
auto *useSymbol{FindInScope(*useModuleScope_, useName)};
if (!useSymbol) {
Say(useName,
IsDefinedOperator(useName)
? "Operator '%s' not found in module '%s'"_err_en_US
: "'%s' not found in module '%s'"_err_en_US,
useName, useModuleScope_->name());
return {};
}
if (useSymbol->attrs().test(Attr::PRIVATE)) {
Say(useName,
IsDefinedOperator(useName)
? "Operator '%s' is PRIVATE in '%s'"_err_en_US
: "'%s' is PRIVATE in '%s'"_err_en_US,
useName, useModuleScope_->name());
return {};
}
auto &localSymbol{MakeSymbol(localName)};
AddUse(useName, localSymbol, *useSymbol);
return {&localSymbol, useSymbol};
}
void ModuleVisitor::AddUse(
const SourceName &location, Symbol &localSymbol, const Symbol &useSymbol) {
localSymbol.attrs() = useSymbol.attrs();
localSymbol.attrs() &= ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
localSymbol.flags() = useSymbol.flags();
if (auto *details{localSymbol.detailsIf<UseDetails>()}) {
// check for use-associating the same symbol again:
if (localSymbol.GetUltimate() != useSymbol.GetUltimate()) {
localSymbol.set_details(
UseErrorDetails{*details}.add_occurrence(location, *useModuleScope_));
}
} else if (auto *details{localSymbol.detailsIf<UseErrorDetails>()}) {
details->add_occurrence(location, *useModuleScope_);
} else if (!localSymbol.has<UnknownDetails>()) {
Say(location,
"Cannot use-associate '%s'; it is already declared in this scope"_err_en_US,
localSymbol.name())
.Attach(localSymbol.name(), "Previous declaration of '%s'"_en_US,
localSymbol.name());
} else {
localSymbol.set_details(UseDetails{location, useSymbol});
}
}
bool ModuleVisitor::BeginSubmodule(
const parser::Name &name, const parser::ParentIdentifier &parentId) {
auto &ancestorName{std::get<parser::Name>(parentId.t)};
auto &parentName{std::get<std::optional<parser::Name>>(parentId.t)};
Scope *ancestor{FindModule(ancestorName)};
if (!ancestor) {
return false;
}
Scope *parentScope{parentName ? FindModule(*parentName, ancestor) : ancestor};
if (!parentScope) {
return false;
}
PushScope(*parentScope); // submodule is hosted in parent
BeginModule(name, true);
if (!ancestor->AddSubmodule(name.source, currScope())) {
Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US,
ancestorName.source, name.source);
}
return true;
}
void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) {
auto &symbol{MakeSymbol(name, ModuleDetails{isSubmodule})};
auto &details{symbol.get<ModuleDetails>()};
PushScope(Scope::Kind::Module, &symbol);
details.set_scope(&currScope());
prevAccessStmt_ = nullptr;
}
// Find a module or submodule by name and return its scope.
// If ancestor is present, look for a submodule of that ancestor module.
// May have to read a .mod file to find it.
// If an error occurs, report it and return nullptr.
Scope *ModuleVisitor::FindModule(const parser::Name &name, Scope *ancestor) {
ModFileReader reader{context()};
auto *scope{reader.Read(name.source, ancestor)};
if (!scope) {
return nullptr;
}
if (scope->kind() != Scope::Kind::Module) {
Say(name, "'%s' is not a module"_err_en_US);
return nullptr;
}
Resolve(name, scope->symbol());
return scope;
}
void ModuleVisitor::ApplyDefaultAccess() {
for (auto &pair : currScope()) {
Symbol &symbol = *pair.second;
if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
symbol.attrs().set(defaultAccess_);
}
}
}
// InterfaceVistor implementation
bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
inInterfaceBlock_ = true;
isAbstract_ = std::holds_alternative<parser::Abstract>(x.u);
return true;
}
void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
genericSymbol_ = nullptr;
inInterfaceBlock_ = false;
isAbstract_ = false;
}
// Create a symbol in genericSymbol_ for this GenericSpec.
bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
auto info{GenericSpecInfo{x}};
const SourceName &symbolName{info.symbolName()};
if (IsLogicalConstant(context(), symbolName)) {
Say(symbolName,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
return false;
}
genericSymbol_ = currScope().FindSymbol(symbolName);
if (genericSymbol_) {
if (genericSymbol_->has<DerivedTypeDetails>()) {
// A generic and derived type with same name: create a generic symbol
// and save derived type in it.
CHECK(genericSymbol_->scope()->symbol() == genericSymbol_);
GenericDetails details;
details.set_derivedType(*genericSymbol_);
EraseSymbol(*genericSymbol_);
genericSymbol_ = &MakeSymbol(symbolName);
genericSymbol_->set_details(details);
// preserve access attributes
genericSymbol_->attrs() |=
details.derivedType()->attrs() & Attrs{Attr::PUBLIC, Attr::PRIVATE};
} else if (genericSymbol_->has<UnknownDetails>()) {
// okay
} else if (!genericSymbol_->IsSubprogram()) {
SayAlreadyDeclared(symbolName, *genericSymbol_);
EraseSymbol(*genericSymbol_);
genericSymbol_ = nullptr;
} else if (genericSymbol_->has<UseDetails>()) {
// copy the USEd symbol into this scope so we can modify it
const Symbol &ultimate{genericSymbol_->GetUltimate()};
EraseSymbol(*genericSymbol_);
genericSymbol_ = &CopySymbol(ultimate);
if (const auto *details{ultimate.detailsIf<GenericDetails>()}) {
genericSymbol_->set_details(GenericDetails{details->specificProcs()});
} else if (const auto *details{ultimate.detailsIf<SubprogramDetails>()}) {
genericSymbol_->set_details(SubprogramDetails{*details});
} else {
common::die("unexpected kind of symbol");
}
}
}
if (!genericSymbol_ || genericSymbol_->has<UnknownDetails>()) {
genericSymbol_ = &MakeSymbol(symbolName);
genericSymbol_->set_details(GenericDetails{});
}
if (genericSymbol_->has<GenericDetails>()) {
// okay
} else if (genericSymbol_->has<SubprogramDetails>() ||
genericSymbol_->has<SubprogramNameDetails>()) {
GenericDetails genericDetails;
genericDetails.set_specific(*genericSymbol_);
EraseSymbol(*genericSymbol_);
genericSymbol_ = &MakeSymbol(symbolName);
genericSymbol_->set_details(genericDetails);
} else {
common::die("unexpected kind of symbol");
}
info.Resolve(genericSymbol_);
return false;
}
bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
if (!isGeneric()) {
Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
return false;
}
auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)};
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, kind);
return false;
}
void InterfaceVisitor::Post(const parser::GenericStmt &x) {
if (auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)}) {
genericSymbol_->attrs().set(AccessSpecToAttr(*accessSpec));
}
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, ProcedureKind::Procedure);
genericSymbol_ = nullptr;
}
GenericDetails &InterfaceVisitor::GetGenericDetails() {
CHECK(genericSymbol_);
return genericSymbol_->get<GenericDetails>();
}
void InterfaceVisitor::AddSpecificProcs(
const std::list<parser::Name> &names, ProcedureKind kind) {
for (const auto &name : names) {
specificProcs_.emplace(genericSymbol_, std::make_pair(&name, kind));
}
}
// By now we should have seen all specific procedures referenced by name in
// this generic interface. Resolve those names to symbols.
void InterfaceVisitor::ResolveSpecificsInGeneric(Symbol &generic) {
CHECK(!genericSymbol_);
auto &details{generic.get<GenericDetails>()};
std::set<SourceName> namesSeen; // to check for duplicate names
for (const auto *symbol : details.specificProcs()) {
namesSeen.insert(symbol->name());
}
auto range{specificProcs_.equal_range(&generic)};
for (auto it{range.first}; it != range.second; ++it) {
auto *name{it->second.first};
auto kind{it->second.second};
const auto *symbol{FindSymbol(*name)};
if (!symbol) {
Say(*name, "Procedure '%s' not found"_err_en_US);
continue;
}
symbol = &symbol->GetUltimate();
if (symbol == &generic) {
if (auto *specific{generic.get<GenericDetails>().specific()}) {
symbol = specific;
}
}
if (!symbol->has<SubprogramDetails>() &&
!symbol->has<SubprogramNameDetails>()) {
Say(*name, "'%s' is not a subprogram"_err_en_US);
continue;
}
if (kind == ProcedureKind::ModuleProcedure) {
if (const auto *nd{symbol->detailsIf<SubprogramNameDetails>()}) {
if (nd->kind() != SubprogramKind::Module) {
Say(*name, "'%s' is not a module procedure"_err_en_US);
}
} else {
// USE-associated procedure
const auto *sd{symbol->detailsIf<SubprogramDetails>()};
CHECK(sd != nullptr);
if (symbol->owner().kind() != Scope::Kind::Module ||
sd->isInterface()) {
Say(*name, "'%s' is not a module procedure"_err_en_US);
}
}
}
if (!namesSeen.insert(name->source).second) {
Say(*name,
IsDefinedOperator(generic.name())
? "Procedure '%s' is already specified in generic operator '%s'"_err_en_US
: "Procedure '%s' is already specified in generic '%s'"_err_en_US,
name->source, generic.name());
continue;
}
details.add_specificProc(*symbol);
}
specificProcs_.erase(range.first, range.second);
}
// Check that the specific procedures are all functions or all subroutines.
// If there is a derived type with the same name they must be functions.
// Set the corresponding flag on generic.
void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) {
ResolveSpecificsInGeneric(generic);
auto &details{generic.get<GenericDetails>()};
if (auto *proc{details.CheckSpecific()}) {
SayAlreadyDeclared(generic.name(), *proc);
}
auto &specifics{details.specificProcs()};
if (specifics.empty()) {
if (details.derivedType()) {
generic.set(Symbol::Flag::Function);
}
return;
}
auto &firstSpecific{*specifics.front()};
bool isFunction{firstSpecific.test(Symbol::Flag::Function)};
for (auto *specific : specifics) {
if (isFunction != specific->test(Symbol::Flag::Function)) {
auto &msg{Say(generic.name(),
"Generic interface '%s' has both a function and a subroutine"_err_en_US)};
if (isFunction) {
msg.Attach(firstSpecific.name(), "Function declaration"_en_US);
msg.Attach(specific->name(), "Subroutine declaration"_en_US);
} else {
msg.Attach(firstSpecific.name(), "Subroutine declaration"_en_US);
msg.Attach(specific->name(), "Function declaration"_en_US);
}
}
}
if (!isFunction && details.derivedType()) {
SayDerivedType(generic.name(),
"Generic interface '%s' may only contain functions due to derived type"
" with same name"_err_en_US,
*details.derivedType()->scope());
}
generic.set(isFunction ? Symbol::Flag::Function : Symbol::Flag::Subroutine);
}
// SubprogramVisitor implementation
void SubprogramVisitor::Post(const parser::StmtFunctionStmt &x) {
if (badStmtFuncFound_) {
return; // This wasn't really a stmt function so no scope was created
}
PopScope();
}
// Return false if it is actually an assignment statement.
bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) {
const auto &name{std::get<parser::Name>(x.t)};
const DeclTypeSpec *resultType{nullptr};
// Look up name: provides return type or tells us if it's an array
if (auto *symbol{FindSymbol(name)}) {
auto *details{symbol->detailsIf<EntityDetails>()};
if (!details) {
badStmtFuncFound_ = true;
return false;
}
// TODO: check that attrs are compatible with stmt func
resultType = details->type();
EraseSymbol(name);
}
if (badStmtFuncFound_) {
Say(name, "'%s' has not been declared as an array"_err_en_US);
return true;
}
auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)};
auto &details{symbol.get<SubprogramDetails>()};
for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
EntityDetails dummyDetails{true};
if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) {
if (auto *d{dummySymbol->detailsIf<EntityDetails>()}) {
if (d->type()) {
dummyDetails.set_type(*d->type());
}
}
}
details.add_dummyArg(MakeSymbol(dummyName, std::move(dummyDetails)));
}
EraseSymbol(name); // added by PushSubprogramScope
EntityDetails resultDetails;
if (resultType) {
resultDetails.set_type(*resultType);
}
details.set_result(MakeSymbol(name, std::move(resultDetails)));
return true;
}
bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
if (suffix.resultName) {
funcInfo_.resultName = &suffix.resultName.value();
}
return true;
}
bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) {
// Save this to process after UseStmt and ImplicitPart
if (const auto *parsedType{std::get_if<parser::DeclarationTypeSpec>(&x.u)}) {
funcInfo_.parsedType = parsedType;
funcInfo_.source = currStmtSource();
return false;
} else {
return true;
}
}
void SubprogramVisitor::Post(const parser::ImplicitPart &) {
// If the function has a type in the prefix, process it now
if (funcInfo_.parsedType) {
messageHandler().set_currStmtSource(funcInfo_.source);
if (const auto *type{ProcessTypeSpec(*funcInfo_.parsedType)}) {
funcInfo_.resultSymbol->SetType(*type);
}
}
funcInfo_ = {};
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
const auto &name{std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t)};
return BeginSubprogram(name, Symbol::Flag::Subroutine);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
const auto &name{std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t)};
return BeginSubprogram(name, Symbol::Flag::Function);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Function &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) {
return BeginAttrs();
}
bool SubprogramVisitor::Pre(const parser::FunctionStmt &stmt) {
return BeginAttrs();
}
void SubprogramVisitor::Post(const parser::SubroutineStmt &stmt) {
const auto &name{std::get<parser::Name>(stmt.t)};
auto &details{PostSubprogramStmt(name)};
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
const parser::Name *dummyName = std::get_if<parser::Name>(&dummyArg.u);
CHECK(dummyName != nullptr && "TODO: alternate return indicator");
Symbol &dummy{MakeSymbol(*dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
}
void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
const auto &name{std::get<parser::Name>(stmt.t)};
auto &details{PostSubprogramStmt(name)};
for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
Symbol &dummy{MakeSymbol(dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
const parser::Name *funcResultName;
if (funcInfo_.resultName && funcInfo_.resultName->source != name.source) {
funcResultName = funcInfo_.resultName;
} else {
EraseSymbol(name); // was added by PushSubprogramScope
funcResultName = &name;
}
// add function result to function scope
EntityDetails funcResultDetails;
funcResultDetails.set_funcResult(true);
funcInfo_.resultSymbol =
&MakeSymbol(*funcResultName, std::move(funcResultDetails));
details.set_result(*funcInfo_.resultSymbol);
}
SubprogramDetails &SubprogramVisitor::PostSubprogramStmt(
const parser::Name &name) {
Symbol &symbol{*currScope().symbol()};
CHECK(name.source == symbol.name());
SetBindNameOn(symbol);
symbol.attrs() |= EndAttrs();
if (symbol.attrs().test(Attr::MODULE)) {
symbol.attrs().set(Attr::EXTERNAL, false);
}
return symbol.get<SubprogramDetails>();
}
bool SubprogramVisitor::BeginSubprogram(
const parser::Name &name, Symbol::Flag subpFlag, bool hasModulePrefix) {
if (hasModulePrefix && !inInterfaceBlock()) {
auto *symbol{FindSymbol(name)};
if (!symbol || !symbol->IsSeparateModuleProc()) {
Say(name, "'%s' was not declared a separate module procedure"_err_en_US);
return false;
}
if (symbol->owner() == currScope()) {
// separate module procedure declared and defined in same module
PushScope(*symbol->scope());
} else {
PushSubprogramScope(name, subpFlag);
}
} else {
PushSubprogramScope(name, subpFlag);
}
return true;
}
void SubprogramVisitor::EndSubprogram() { PopScope(); }
Symbol &SubprogramVisitor::PushSubprogramScope(
const parser::Name &name, Symbol::Flag subpFlag) {
auto *symbol{GetSpecificFromGeneric(name)};
if (!symbol) {
if (auto *prev{FindSymbol(name)}) {
if (prev->attrs().test(Attr::EXTERNAL) &&
prev->has<ProcEntityDetails>()) {
// this subprogram was previously called, now being declared
if (!prev->test(subpFlag)) {
Say2(name,
subpFlag == Symbol::Flag::Function
? "'%s' was previously called as a subroutine"_err_en_US
: "'%s' was previously called as a function"_err_en_US,
*prev, "Previous call of '%s'"_en_US);
}
EraseSymbol(name);
}
}
symbol = &MakeSymbol(name, SubprogramDetails{});
symbol->set(subpFlag);
}
PushScope(Scope::Kind::Subprogram, symbol);
auto &details{symbol->get<SubprogramDetails>()};
if (inInterfaceBlock()) {
details.set_isInterface();
if (!isAbstract()) {
symbol->attrs().set(Attr::EXTERNAL);
}
if (isGeneric()) {
GetGenericDetails().add_specificProc(*symbol);
}
implicitRules().set_inheritFromParent(false);
}
FindSymbol(name)->set(subpFlag);
return *symbol;
}
// If name is a generic, return specific subprogram with the same name.
Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
if (auto *symbol{FindSymbol(name)}) {
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
// found generic, want subprogram
auto *specific{details->specific()};
if (isGeneric()) {
if (specific) {
SayAlreadyDeclared(name, *specific);
} else {
EraseSymbol(name);
specific = &MakeSymbol(name, Attrs{}, SubprogramDetails{});
GetGenericDetails().set_specific(*specific);
}
}
if (specific) {
if (!specific->has<SubprogramDetails>()) {
specific->set_details(SubprogramDetails{});
}
return specific;
}
}
}
return nullptr;
}
// DeclarationVisitor implementation
bool DeclarationVisitor::BeginDecl() {
BeginDeclTypeSpec();
BeginArraySpec();
return BeginAttrs();
}
void DeclarationVisitor::EndDecl() {
EndDeclTypeSpec();
EndArraySpec();
EndAttrs();
}
bool DeclarationVisitor::CheckUseError(const parser::Name &name) {
const auto *details{name.symbol->detailsIf<UseErrorDetails>()};
if (!details) {
return false;
}
Message &msg{Say(name, "Reference to '%s' is ambiguous"_err_en_US)};
for (const auto &[location, module] : details->occurrences()) {
msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US,
name.source, module->name());
}
return true;
}
// Report error if accessibility of symbol doesn't match isPrivate.
void DeclarationVisitor::CheckAccessibility(
const SourceName &name, bool isPrivate, Symbol &symbol) {
if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) {
Say2(name,
"'%s' does not have the same accessibility as its previous declaration"_err_en_US,
symbol, "Previous declaration of '%s'"_en_US);
}
}
// Check that component is accessible from current scope.
bool DeclarationVisitor::CheckAccessibleComponent(
const SourceName &name, const Symbol &symbol) {
if (!symbol.attrs().test(Attr::PRIVATE)) {
return true;
}
// component must be in a module/submodule because of PRIVATE:
const Scope *moduleScope{&symbol.owner()};
CHECK(moduleScope->kind() == Scope::Kind::DerivedType);
while (moduleScope->kind() != Scope::Kind::Module &&
moduleScope->kind() != Scope::Kind::Global) {
moduleScope = &moduleScope->parent();
}
if (moduleScope->kind() == Scope::Kind::Module) {
for (auto *scope{&currScope()}; scope->kind() != Scope::Kind::Global;
scope = &scope->parent()) {
if (scope == moduleScope) {
return true;
}
}
Say(name,
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
name.ToString(), moduleScope->name());
} else {
Say(name,
"PRIVATE component '%s' is only accessible within its module"_err_en_US,
name.ToString());
}
return false;
}
void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
const auto &name{std::get<parser::Name>(x.t)};
DeclareObjectEntity(name, Attrs{});
}
void DeclarationVisitor::Post(const parser::CodimensionDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
DeclareObjectEntity(name, Attrs{});
}
void DeclarationVisitor::Post(const parser::EntityDecl &x) {
// TODO: may be under StructureStmt
const auto &name{std::get<parser::ObjectName>(x.t)};
Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}};
Symbol &symbol{DeclareUnknownEntity(name, attrs)};
if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
if (ConvertToObjectEntity(symbol)) {
if (auto *expr{std::get_if<parser::ConstantExpr>(&init->u)}) {
if (auto folded{EvaluateConvertedExpr(
symbol, *expr, expr->thing.value().source)}) {
symbol.get<ObjectEntityDetails>().set_init(std::move(*folded));
}
}
}
} else if (attrs.test(Attr::PARAMETER)) {
Say(name, "Missing initialization for parameter '%s'"_err_en_US);
}
}
void DeclarationVisitor::Post(const parser::PointerDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
DeclareUnknownEntity(name, Attrs{Attr::POINTER});
}
bool DeclarationVisitor::Pre(const parser::BindEntity &x) {
auto kind{std::get<parser::BindEntity::Kind>(x.t)};
auto &name{std::get<parser::Name>(x.t)};
Symbol *symbol;
if (kind == parser::BindEntity::Kind::Object) {
symbol = &HandleAttributeStmt(Attr::BIND_C, name);
} else {
symbol = &MakeCommonBlockSymbol(name);
symbol->attrs().set(Attr::BIND_C);
}
SetBindNameOn(*symbol);
return false;
}
bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) {
auto &name{std::get<parser::NamedConstant>(x.t).v};
auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)};
if (!ConvertToObjectEntity(symbol)) {
SayWithDecl(
name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US);
return false;
}
const auto &expr{std::get<parser::ConstantExpr>(x.t)};
Walk(expr);
ApplyImplicitRules(symbol);
if (auto converted{
EvaluateConvertedExpr(symbol, expr, expr.thing.value().source)}) {
symbol.get<ObjectEntityDetails>().set_init(std::move(*converted));
}
return false;
}
bool DeclarationVisitor::Pre(const parser::NamedConstant &x) {
const parser::Name &name{x.v};
if (!FindSymbol(name)) {
Say(name, "Named constant '%s' not found"_err_en_US);
} else {
CheckUseError(name);
}
return false;
}
bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
HandleAttributeStmt(Attr::EXTERNAL, x.v);
for (const auto &name : x.v) {
auto *symbol{FindSymbol(name)};
if (!ConvertToProcEntity(*symbol)) {
SayWithDecl(
name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US);
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::IntentStmt &x) {
auto &intentSpec{std::get<parser::IntentSpec>(x.t)};
auto &names{std::get<std::list<parser::Name>>(x.t)};
return CheckNotInBlock("INTENT") &&
HandleAttributeStmt(IntentSpecToAttr(intentSpec), names);
}
bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
return HandleAttributeStmt(Attr::INTRINSIC, x.v);
}
bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
return CheckNotInBlock("OPTIONAL") &&
HandleAttributeStmt(Attr::OPTIONAL, x.v);
}
bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
return HandleAttributeStmt(Attr::PROTECTED, x.v);
}
bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
return CheckNotInBlock("VALUE") && HandleAttributeStmt(Attr::VALUE, x.v);
}
bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
return HandleAttributeStmt(Attr::VOLATILE, x.v);
}
// Handle a statement that sets an attribute on a list of names.
bool DeclarationVisitor::HandleAttributeStmt(
Attr attr, const std::list<parser::Name> &names) {
for (const auto &name : names) {
HandleAttributeStmt(attr, name);
}
return false;
}
Symbol &DeclarationVisitor::HandleAttributeStmt(
Attr attr, const parser::Name &name) {
if (attr == Attr::INTRINSIC &&
!context().intrinsics().IsIntrinsic(name.source.ToString())) {
Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US);
}
auto *symbol{FindInScope(currScope(), name)};
if (symbol) {
// symbol was already there: set attribute on it
if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) {
// TODO: if in a BLOCK, attribute should only be set while in the block
} else if (symbol->has<UseDetails>()) {
Say(*currStmtSource(),
"Cannot change %s attribute on use-associated '%s'"_err_en_US,
EnumToString(attr), name.source);
}
} else {
symbol = &MakeSymbol(name, EntityDetails{});
}
symbol->attrs().set(attr);
symbol->attrs() = HandleSaveName(name.source, symbol->attrs());
return *symbol;
}
bool DeclarationVisitor::CheckNotInBlock(const char *stmt) {
if (currScope().kind() == Scope::Kind::Block) {
Say(MessageFormattedText{
"%s statement is not allowed in a BLOCK construct"_err_en_US, stmt});
return false;
} else {
return true;
}
}
void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
CHECK(objectDeclAttr_.has_value());
const auto &name{std::get<parser::ObjectName>(x.t)};
DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
}
// Declare an entity not yet known to be an object or proc.
Symbol &DeclarationVisitor::DeclareUnknownEntity(
const parser::Name &name, Attrs attrs) {
if (!arraySpec().empty() || !coarraySpec().empty()) {
return DeclareObjectEntity(name, attrs);
} else {
Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
if (auto *type{GetDeclTypeSpec()}) {
SetType(name, *type);
}
SetBindNameOn(symbol);
if (symbol.attrs().test(Attr::EXTERNAL)) {
ConvertToProcEntity(symbol);
}
return symbol;
}
}
Symbol &DeclarationVisitor::DeclareProcEntity(
const parser::Name &name, Attrs attrs, const ProcInterface &interface) {
Symbol &symbol{DeclareEntity<ProcEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
if (interface.type()) {
symbol.set(Symbol::Flag::Function);
} else if (interface.symbol()) {
symbol.set(interface.symbol()->test(Symbol::Flag::Function)
? Symbol::Flag::Function
: Symbol::Flag::Subroutine);
}
details->set_interface(interface);
SetBindNameOn(symbol);
SetPassNameOn(symbol);
}
return symbol;
}
Symbol &DeclarationVisitor::DeclareObjectEntity(
const parser::Name &name, Attrs attrs) {
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (auto *type{GetDeclTypeSpec()}) {
SetType(name, *type);
}
if (!arraySpec().empty()) {
if (details->IsArray()) {
Say(name,
"The dimensions of '%s' have already been declared"_err_en_US);
context().SetError(symbol);
} else {
details->set_shape(arraySpec());
}
ClearArraySpec();
}
if (!coarraySpec().empty()) {
if (details->IsCoarray()) {
Say(name,
"The codimensions of '%s' have already been declared"_err_en_US);
context().SetError(symbol);
} else {
details->set_coshape(coarraySpec());
}
ClearCoarraySpec();
}
SetBindNameOn(symbol);
}
return symbol;
}
void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) {
SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) {
SetDeclTypeSpec(MakeLogicalType(x.kind));
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &x) {
if (!charInfo_.length) {
charInfo_.length = ParamValue{1};
}
if (!charInfo_.kind.has_value()) {
charInfo_.kind = KindExpr{
context().defaultKinds().GetDefaultKind(TypeCategory::Character)};
}
SetDeclTypeSpec(currScope().MakeCharacterType(
std::move(*charInfo_.length), std::move(*charInfo_.kind)));
charInfo_ = {};
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::NCharacter &x) {
if (!charInfo_.length) {
charInfo_.length = ParamValue{1};
}
CHECK(!charInfo_.kind.has_value());
SetDeclTypeSpec(currScope().MakeCharacterType(
std::move(*charInfo_.length), KindExpr{2 /* EUC_JP */}));
charInfo_ = {};
}
void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) {
charInfo_.kind = EvaluateSubscriptIntExpr(x.kind);
if (x.length) {
charInfo_.length = GetParamValue(*x.length);
}
}
void DeclarationVisitor::Post(const parser::CharLength &x) {
if (const auto *length{std::get_if<std::int64_t>(&x.u)}) {
charInfo_.length = ParamValue{*length};
} else {
charInfo_.length = GetParamValue(std::get<parser::TypeParamValue>(x.u));
}
}
void DeclarationVisitor::Post(const parser::LengthSelector &x) {
if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) {
charInfo_.length = GetParamValue(*param);
}
}
bool DeclarationVisitor::Pre(const parser::KindParam &x) {
if (const auto *kind{std::get_if<
parser::Scalar<parser::Integer<parser::Constant<parser::Name>>>>(
&x.u)}) {
const parser::Name &name{kind->thing.thing.thing};
if (!FindSymbol(name)) {
Say(name, "Parameter '%s' not found"_err_en_US);
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &x) {
CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived);
return true;
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &x) {
SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
return true;
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Record &) {
// TODO
return true;
}
void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) {
const auto &typeName{std::get<parser::Name>(x.t)};
const Symbol *typeSymbol{ResolveDerivedType(typeName)};
if (typeSymbol == nullptr) {
return;
}
// This DerivedTypeSpec is created initially as a search key.
// If it turns out to have the same name and actual parameter
// value expressions as some other DerivedTypeSpec in the current
// scope, then we'll use that extant spec; otherwise, when this
// spec is distinct from all derived types previously instantiated
// in the current scope, this spec will be moved to that collection.
DerivedTypeSpec spec{*typeSymbol};
// The expressions in a derived type specifier whose values define
// non-defaulted type parameters are evaluated in the enclosing scope.
// Default initialization expressions for the derived type's parameters
// may reference other parameters so long as the declaration precedes the
// use in the expression (10.1.12). This is not necessarily the same
// order as "type parameter order" (7.5.3.2).
// Parameters of the most deeply nested "base class" come first when the
// derived type is an extension.
const DerivedTypeDetails &typeDetails{typeSymbol->get<DerivedTypeDetails>()};
auto parameterNames{typeDetails.OrderParameterNames(*typeSymbol)};
auto parameterDecls{typeDetails.OrderParameterDeclarations(*typeSymbol)};
auto nextNameIter{parameterNames.begin()};
bool seenAnyName{false};
for (const auto &typeParamSpec :
std::get<std::list<parser::TypeParamSpec>>(x.t)) {
const auto &optKeyword{
std::get<std::optional<parser::Keyword>>(typeParamSpec.t)};
SourceName name;
if (optKeyword.has_value()) {
seenAnyName = true;
name = optKeyword->v.source;
auto it{std::find_if(parameterDecls.begin(), parameterDecls.end(),
[&](const Symbol *symbol) { return symbol->name() == name; })};
if (it == parameterDecls.end()) {
Say(name,
"'%s' is not the name of a parameter for this type"_err_en_US);
} else {
Resolve(optKeyword->v, const_cast<Symbol *>(*it));
}
} else if (seenAnyName) {
Say(typeName.source, "Type parameter value must have a name"_err_en_US);
continue;
} else if (nextNameIter != parameterNames.end()) {
name = *nextNameIter++;
} else {
Say(typeName.source,
"Too many type parameters given for derived type '%s'"_err_en_US);
break;
}
if (spec.FindParameter(name)) {
Say(typeName.source,
"Multiple values given for type parameter '%s'"_err_en_US, name);
} else {
const auto &value{std::get<parser::TypeParamValue>(typeParamSpec.t)};
ParamValue param{GetParamValue(value)}; // folded
if (!param.isExplicit() || param.GetExplicit().has_value()) {
spec.AddParamValue(name, std::move(param));
}
}
}
// Ensure that any type parameter without an explicit value has a
// default initialization in the derived type's definition.
const Scope *typeScope{typeSymbol->scope()};
CHECK(typeScope != nullptr);
for (const SourceName &name : parameterNames) {
if (!spec.FindParameter(name)) {
auto it{std::find_if(parameterDecls.begin(), parameterDecls.end(),
[&](const Symbol *symbol) { return symbol->name() == name; })};
CHECK(it != parameterDecls.end());
auto &symbol{**it};
const auto *details{symbol.detailsIf<TypeParamDetails>()};
if (details == nullptr || !details->init().has_value()) {
Say(typeName.source,
"Type parameter '%s' lacks a value and has no default"_err_en_US,
symbol.name());
}
}
}
auto category{GetDeclTypeSpecCategory()};
spec.ProcessParameterExpressions(context().foldingContext());
if (const DeclTypeSpec *
extant{currScope().FindInstantiatedDerivedType(spec, category)}) {
// This derived type and parameter expressions (if any) are already present
// in this scope.
SetDeclTypeSpec(*extant);
} else {
DeclTypeSpec &type{currScope().MakeDerivedType(std::move(spec), category)};
if (parameterNames.empty() || currScope().IsParameterizedDerivedType()) {
// The derived type being instantiated is not a parameterized derived
// type, or the instantiation is within the definition of a parameterized
// derived type; don't instantiate a new scope.
type.derivedTypeSpec().set_scope(*typeScope);
} else {
// This is a parameterized derived type and this spec is not in the
// context of a parameterized derived type definition, so we need to
// clone its contents, specialize them with the actual type parameter
// values, and check constraints.
auto save{GetFoldingContext().messages().SetLocation(*currStmtSource())};
type.derivedTypeSpec().Instantiate(currScope(), context());
}
SetDeclTypeSpec(type);
}
// Capture the DerivedTypeSpec in the parse tree for use in building
// structure constructor expressions.
x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec();
}
// The descendents of DerivedTypeDef in the parse tree are visited directly
// in this Pre() routine so that recursive use of the derived type can be
// supported in the components.
bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) {
auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)};
Walk(stmt);
Walk(std::get<std::list<parser::Statement<parser::TypeParamDefStmt>>>(x.t));
auto &scope{currScope()};
CHECK(scope.symbol() != nullptr);
CHECK(scope.symbol()->scope() == &scope);
auto &details{scope.symbol()->get<DerivedTypeDetails>()};
std::set<SourceName> paramNames;
for (auto &paramName : std::get<std::list<parser::Name>>(stmt.statement.t)) {
details.add_paramName(paramName.source);
auto *symbol{FindInScope(scope, paramName)};
if (!symbol) {
Say(paramName,
"No definition found for type parameter '%s'"_err_en_US); // C742
} else if (!symbol->has<TypeParamDetails>()) {
Say2(paramName, "'%s' is not defined as a type parameter"_err_en_US,
*symbol, "Definition of '%s'"_en_US); // C741
}
if (!paramNames.insert(paramName.source).second) {
Say(paramName,
"Duplicate type parameter name: '%s'"_err_en_US); // C731
}
}
for (const auto &[name, symbol] : currScope()) {
if (symbol->has<TypeParamDetails>() && !paramNames.count(name)) {
SayDerivedType(name,
"'%s' is not a type parameter of this derived type"_err_en_US,
currScope()); // C742
}
}
Walk(std::get<std::list<parser::Statement<parser::PrivateOrSequence>>>(x.t));
if (derivedTypeInfo_.sequence) {
details.set_sequence(true);
if (derivedTypeInfo_.extends) {
Say(stmt.source,
"A sequence type may not have the EXTENDS attribute"_err_en_US); // C735
}
if (!details.paramNames().empty()) {
Say(stmt.source,
"A sequence type may not have type parameters"_err_en_US); // C740
}
}
Walk(std::get<std::list<parser::Statement<parser::ComponentDefStmt>>>(x.t));
Walk(std::get<std::optional<parser::TypeBoundProcedurePart>>(x.t));
Walk(std::get<parser::Statement<parser::EndTypeStmt>>(x.t));
derivedTypeInfo_ = {};
PopScope();
return false;
}
bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &x) {
return BeginAttrs();
}
void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
auto &name{std::get<parser::Name>(x.t)};
// Resolve the EXTENDS() clause before creating the derived
// type's symbol to foil attempts to recursively extend a type.
auto *extendsName{derivedTypeInfo_.extends};
const Symbol *extendsType{nullptr};
if (extendsName != nullptr) {
if (extendsName->source == name.source) {
Say(extendsName->source,
"Derived type '%s' cannot extend itself"_err_en_US);
} else {
extendsType = ResolveDerivedType(*extendsName);
}
}
auto &symbol{MakeSymbol(name, GetAttrs(), DerivedTypeDetails{})};
derivedTypeInfo_.type = &symbol;
PushScope(Scope::Kind::DerivedType, &symbol);
if (extendsType != nullptr) {
// Declare the "parent component"; private if the type is
// Any symbol stored in the EXTENDS() clause is temporarily
// hidden so that a new symbol can be created for the parent
// component without producing spurious errors about already
// existing.
auto restorer{common::ScopedSet(extendsName->symbol, nullptr)};
if (OkToAddComponent(*extendsName, extendsType)) {
auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})};
comp.attrs().set(Attr::PRIVATE, extendsType->attrs().test(Attr::PRIVATE));
comp.set(Symbol::Flag::ParentComp);
DeclTypeSpec &type{currScope().MakeDerivedType(*extendsType)};
type.derivedTypeSpec().set_scope(*extendsType->scope());
comp.SetType(type);
DerivedTypeDetails &details{symbol.get<DerivedTypeDetails>()};
details.add_component(comp);
}
}
EndAttrs();
}
void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) {
auto *type{GetDeclTypeSpec()};
auto attr{std::get<common::TypeParamAttr>(x.t)};
for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) {
auto &name{std::get<parser::Name>(decl.t)};
if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{attr})}) {
SetType(name, *type);
if (auto &init{
std::get<std::optional<parser::ScalarIntConstantExpr>>(decl.t)}) {
if (auto maybeExpr{EvaluateConvertedExpr(
*symbol, *init, init->thing.thing.thing.value().source)}) {
auto *intExpr{std::get_if<SomeIntExpr>(&maybeExpr->u)};
CHECK(intExpr != nullptr);
symbol->get<TypeParamDetails>().set_init(std::move(*intExpr));
}
}
}
}
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
derivedTypeInfo_.extends = &x.v;
return false;
}
bool DeclarationVisitor::Pre(const parser::PrivateStmt &x) {
if (!currScope().parent().IsModule()) {
Say("PRIVATE is only allowed in a derived type that is"
" in a module"_err_en_US); // C766
} else if (derivedTypeInfo_.sawContains) {
derivedTypeInfo_.privateBindings = true;
} else if (!derivedTypeInfo_.privateComps) {
derivedTypeInfo_.privateComps = true;
} else {
Say("PRIVATE may not appear more than once in"
" derived type components"_en_US); // C738
}
return false;
}
bool DeclarationVisitor::Pre(const parser::SequenceStmt &x) {
derivedTypeInfo_.sequence = true;
return false;
}
void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
auto attrs{GetAttrs()};
if (derivedTypeInfo_.privateComps &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
attrs.set(Attr::PRIVATE);
}
if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
if (const auto *declType{GetDeclTypeSpec()}) {
if (const auto *derived{declType->AsDerived()}) {
if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C737
Say("Recursive use of the derived type requires "
"POINTER or ALLOCATABLE"_err_en_US);
}
}
}
}
if (OkToAddComponent(name)) {
auto &symbol{DeclareObjectEntity(name, attrs)};
if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
if (auto *initExpr{std::get_if<parser::ConstantExpr>(&init->u)}) {
details->set_init(EvaluateExpr(*initExpr));
}
}
}
currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
}
ClearArraySpec();
ClearCoarraySpec();
}
bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &) {
CHECK(!interfaceName_);
return BeginDecl();
}
void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
interfaceName_ = nullptr;
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
CHECK(!interfaceName_);
return true;
}
void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
interfaceName_ = nullptr;
}
bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
return !NameIsKnownOrIntrinsic(*name);
}
return true;
}
bool DeclarationVisitor::Pre(const parser::ProcInterface &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
if (!NameIsKnownOrIntrinsic(*name)) {
// Simple names (lacking parameters and size) of intrinsic types re
// ambiguous in Fortran when used as instances of proc-interface.
// The parser recognizes them as interface-names since they can be
// overridden. If they turn out (here) to not be names of explicit
// interfaces, we need to replace their parses.
auto &proc{const_cast<parser::ProcInterface &>(x)};
if (name->source == "integer") {
proc.u =
parser::IntrinsicTypeSpec{parser::IntegerTypeSpec{std::nullopt}};
} else if (name->source == "real") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::Real{std::nullopt}};
} else if (name->source == "doubleprecision") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::DoublePrecision{}};
} else if (name->source == "complex") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::Complex{std::nullopt}};
} else if (name->source == "character") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::Character{std::nullopt}};
} else if (name->source == "logical") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::Logical{std::nullopt}};
} else if (name->source == "doublecomplex") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::DoubleComplex{}};
} else if (name->source == "ncharacter") {
proc.u = parser::IntrinsicTypeSpec{
parser::IntrinsicTypeSpec::NCharacter{std::nullopt}};
}
}
}
return true;
}
void DeclarationVisitor::Post(const parser::ProcInterface &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
interfaceName_ = name;
}
}
void DeclarationVisitor::Post(const parser::ProcDecl &x) {
const auto &name{std::get<parser::Name>(x.t)};
ProcInterface interface;
if (interfaceName_) {
if (const Symbol * symbol{FindExplicitInterface(*interfaceName_)}) {
interface.set_symbol(*symbol);
}
}
if (interface.symbol() == nullptr) {
if (auto *type{GetDeclTypeSpec()}) {
interface.set_type(*type);
}
}
auto attrs{HandleSaveName(name.source, GetAttrs())};
DerivedTypeDetails *dtDetails{nullptr};
if (Symbol * symbol{currScope().symbol()}) {
dtDetails = symbol->detailsIf<DerivedTypeDetails>();
}
if (dtDetails == nullptr) {
attrs.set(Attr::EXTERNAL);
}
Symbol &symbol{DeclareProcEntity(name, attrs, interface)};
if (dtDetails != nullptr) {
dtDetails->add_component(symbol);
}
}
bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &x) {
derivedTypeInfo_.sawContains = true;
return true;
}
void DeclarationVisitor::Post(const parser::ContainsStmt &) {
if (derivedTypeInfo_.sequence) {
Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740
}
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithoutInterface &x) {
if (GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US);
}
for (auto &declaration : x.declarations) {
auto &bindingName{std::get<parser::Name>(declaration.t)};
auto &optName{std::get<std::optional<parser::Name>>(declaration.t)};
auto &procedureName{optName ? *optName : bindingName};
auto *procedure{FindSymbol(procedureName)};
if (!procedure) {
Say(procedureName, "Procedure '%s' not found"_err_en_US);
continue;
}
procedure = &procedure->GetUltimate(); // may come from USE
if (!CanBeTypeBoundProc(*procedure)) {
SayWithDecl(procedureName, *procedure,
"'%s' is not a module procedure or external procedure"
" with explicit interface"_err_en_US);
continue;
}
if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{*procedure})}) {
SetPassNameOn(*s);
}
}
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithInterface &x) {
if (!GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is required when an interface-name is provided"_err_en_US);
}
Symbol *interface{FindExplicitInterface(x.interfaceName)};
if (!interface) {
return;
}
for (auto &bindingName : x.bindingNames) {
if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) {
SetPassNameOn(*s);
}
}
}
void DeclarationVisitor::Post(const parser::FinalProcedureStmt &x) {
for (auto &name : x.v) {
MakeTypeSymbol(name, FinalProcDetails{});
}
}
bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) {
const auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)};
const auto &genericSpec{std::get<Indirection<parser::GenericSpec>>(x.t)};
const auto &bindingNames{std::get<std::list<parser::Name>>(x.t)};
SymbolList specificProcs;
for (const auto &bindingName : bindingNames) {
auto *symbol{FindInTypeOrParents(bindingName)};
if (!symbol) {
Say(bindingName,
"Binding name '%s' not found in this derived type"_err_en_US);
} else if (!symbol->has<ProcBindingDetails>()) {
SayWithDecl(bindingName, *symbol,
"'%s' is not the name of a specific binding of this type"_err_en_US);
} else {
specificProcs.push_back(symbol);
}
}
auto info{GenericSpecInfo{genericSpec.value()}};
const SourceName &symbolName{info.symbolName()};
bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private
: derivedTypeInfo_.privateBindings};
auto *genericSymbol{FindInScope(currScope(), symbolName)};
if (genericSymbol) {
if (!genericSymbol->has<GenericBindingDetails>()) {
genericSymbol = nullptr; // MakeTypeSymbol will report the error below
}
} else if (auto *inheritedSymbol{
FindInTypeOrParents(currScope(), symbolName)}) {
// look in parent types:
if (inheritedSymbol->has<GenericBindingDetails>()) {
CheckAccessibility(symbolName, isPrivate, *inheritedSymbol);
}
}
if (genericSymbol) {
CheckAccessibility(symbolName, isPrivate, *genericSymbol);
} else {
genericSymbol = MakeTypeSymbol(symbolName, GenericBindingDetails{});
if (!genericSymbol) {
return false;
}
if (isPrivate) {
genericSymbol->attrs().set(Attr::PRIVATE);
}
}
auto &details{genericSymbol->get<GenericBindingDetails>()};
details.add_specificProcs(specificProcs);
info.Resolve(genericSymbol);
return false;
}
bool DeclarationVisitor::Pre(const parser::AllocateStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclarationVisitor::Post(const parser::AllocateStmt &) {
EndDeclTypeSpec();
}
bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) {
auto &parsedType{std::get<parser::DerivedTypeSpec>(x.t)};
const DeclTypeSpec *type{ProcessTypeSpec(parsedType)};
if (type == nullptr) {
return false;
}
const DerivedTypeSpec *spec{type->AsDerived()};
const Scope *typeScope{spec ? spec->scope() : nullptr};
if (typeScope == nullptr) {
return false;
}
// N.B C7102 is implicitly enforced by having inaccessible types not
// being found in resolution.
// More constraints are enforced in expression.cc so that they
// can apply to structure constructors that have been converted
// from misparsed function references.
for (const auto &component :
std::get<std::list<parser::ComponentSpec>>(x.t)) {
// Visit the component spec expression, but not the keyword, since
// we need to resolve its symbol in the scope of the derived type.
Walk(std::get<parser::ComponentDataSource>(component.t));
if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
if (Symbol * symbol{FindInTypeOrParents(*typeScope, kw->v)}) {
if (kw->v.symbol == nullptr) {
kw->v.symbol = symbol;
}
CheckAccessibleComponent(kw->v.source, *symbol);
}
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) {
if (!CheckNotInBlock("NAMELIST")) {
return false;
}
NamelistDetails details;
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
auto *symbol{FindSymbol(name)};
if (!symbol) {
symbol = &MakeSymbol(name, ObjectEntityDetails{});
ApplyImplicitRules(*symbol);
} else if (!ConvertToObjectEntity(*symbol)) {
SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US);
}
details.add_object(*symbol);
}
const auto &groupName{std::get<parser::Name>(x.t)};
auto *groupSymbol{FindInScope(currScope(), groupName)};
if (!groupSymbol) {
groupSymbol = &MakeSymbol(groupName, std::move(details));
} else if (groupSymbol->has<NamelistDetails>()) {
groupSymbol->get<NamelistDetails>().add_objects(details.objects());
} else {
SayAlreadyDeclared(groupName, *groupSymbol);
}
return false;
}
bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) {
if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
auto *symbol{FindSymbol(*name)};
if (!symbol) {
Say(*name, "Namelist group '%s' not found"_err_en_US);
} else if (!symbol->GetUltimate().has<NamelistDetails>()) {
SayWithDecl(
*name, *symbol, "'%s' is not the name of a namelist group"_err_en_US);
}
}
return true;
}
bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) {
CheckNotInBlock("COMMON");
const auto &optName{std::get<std::optional<parser::Name>>(x.t)};
parser::Name blankCommon;
blankCommon.source = SourceName{currStmtSource()->begin(), std::size_t{0}};
CHECK(!commonBlockInfo_.curr);
commonBlockInfo_.curr =
&MakeCommonBlockSymbol(optName ? *optName : blankCommon);
return true;
}
void DeclarationVisitor::Post(const parser::CommonStmt::Block &) {
commonBlockInfo_.curr = nullptr;
}
bool DeclarationVisitor::Pre(const parser::CommonBlockObject &x) {
BeginArraySpec();
return true;
}
void DeclarationVisitor::Post(const parser::CommonBlockObject &x) {
CHECK(commonBlockInfo_.curr);
const auto &name{std::get<parser::Name>(x.t)};
auto &symbol{DeclareObjectEntity(name, Attrs{})};
ClearArraySpec();
ClearCoarraySpec();
auto *details{symbol.detailsIf<ObjectEntityDetails>()};
if (!details) {
return; // error was reported
}
commonBlockInfo_.curr->get<CommonBlockDetails>().add_object(symbol);
if (!IsExplicit(details->shape())) {
Say(name,
"The shape of common block object '%s' must be explicit"_err_en_US);
return;
}
auto pair{commonBlockInfo_.names.insert(name.source)};
if (!pair.second) {
const SourceName &prev{*pair.first};
Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev,
"Previous occurrence of '%s' in a COMMON block"_en_US);
return;
}
details->set_commonBlock(*commonBlockInfo_.curr);
}
bool DeclarationVisitor::Pre(const parser::SaveStmt &x) {
if (x.v.empty()) {
saveInfo_.saveAll = currStmtSource();
} else {
for (const parser::SavedEntity &y : x.v) {
auto kind{std::get<parser::SavedEntity::Kind>(y.t)};
const auto &name{std::get<parser::Name>(y.t)};
if (kind == parser::SavedEntity::Kind::Common) {
MakeCommonBlockSymbol(name);
AddSaveName(saveInfo_.commons, name.source);
} else {
HandleAttributeStmt(Attr::SAVE, name);
}
}
}
return false;
}
void DeclarationVisitor::CheckSaveStmts() {
for (const SourceName &name : saveInfo_.entities) {
auto *symbol{FindInScope(currScope(), name)};
if (!symbol) {
// error was reported
} else if (saveInfo_.saveAll) {
// C889 - note that pgi, ifort, xlf do not enforce this constraint
Say2(name,
"Explicit SAVE of '%s' is redundant due to global SAVE statement"_err_en_US,
*saveInfo_.saveAll, "Global SAVE statement"_en_US);
} else if (auto msg{CheckSaveAttr(*symbol)}) {
Say(name, std::move(*msg));
} else {
SetSaveAttr(*symbol);
}
}
for (const SourceName &name : saveInfo_.commons) {
if (auto *symbol{currScope().FindCommonBlock(name)}) {
auto &objects{symbol->get<CommonBlockDetails>().objects()};
if (objects.empty()) {
Say(name,
"'%s' appears as a COMMON block in a SAVE statement but not in"
" a COMMON statement"_err_en_US);
} else {
for (Symbol *object : symbol->get<CommonBlockDetails>().objects()) {
SetSaveAttr(*object);
}
}
}
}
if (saveInfo_.saveAll) {
// Apply SAVE attribute to applicable symbols
for (auto pair : currScope()) {
auto &symbol{*pair.second};
if (!CheckSaveAttr(symbol)) {
SetSaveAttr(symbol);
}
}
}
saveInfo_ = {};
}
// If SAVE attribute can't be set on symbol, return error message.
std::optional<MessageFixedText> DeclarationVisitor::CheckSaveAttr(
const Symbol &symbol) {
if (symbol.IsDummy()) {
return "SAVE attribute may not be applied to dummy argument '%s'"_err_en_US;
} else if (symbol.IsFuncResult()) {
return "SAVE attribute may not be applied to function result '%s'"_err_en_US;
} else if (symbol.has<ProcEntityDetails>() &&
!symbol.attrs().test(Attr::POINTER)) {
return "Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US;
} else {
return std::nullopt;
}
}
// Instead of setting SAVE attribute, record the name in saveInfo_.entities.
Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) {
if (attrs.test(Attr::SAVE)) {
attrs.set(Attr::SAVE, false);
AddSaveName(saveInfo_.entities, name);
}
return attrs;
}
// Record a name in a set of those to be saved.
void DeclarationVisitor::AddSaveName(
std::set<SourceName> &set, const SourceName &name) {
auto pair{set.insert(name)};
if (!pair.second) {
Say2(name, "SAVE attribute was already specified on '%s'"_err_en_US,
*pair.first, "Previous specification of SAVE attribute"_en_US);
}
}
// Set the SAVE attribute on symbol unless it is implicitly saved anyway.
void DeclarationVisitor::SetSaveAttr(Symbol &symbol) {
auto scopeKind{symbol.owner().kind()};
if (scopeKind == Scope::Kind::MainProgram ||
scopeKind == Scope::Kind::Module) {
return;
}
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (details->init()) {
return;
}
}
symbol.attrs().set(Attr::SAVE);
}
// Check types of common block objects, now that they are known.
void DeclarationVisitor::CheckCommonBlocks() {
// check for empty common blocks
for (const auto pair : currScope().commonBlocks()) {
const auto &symbol{*pair.second};
if (symbol.get<CommonBlockDetails>().objects().empty() &&
symbol.attrs().test(Attr::BIND_C)) {
Say(symbol.name(),
"'%s' appears as a COMMON block in a BIND statement but not in"
" a COMMON statement"_err_en_US);
}
}
// check objects in common blocks
for (const auto &name : commonBlockInfo_.names) {
const auto *symbol{currScope().FindSymbol(name)};
if (symbol == nullptr) {
continue;
}
const auto &attrs{symbol->attrs()};
if (attrs.test(Attr::ALLOCATABLE)) {
Say(name,
"ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US);
} else if (attrs.test(Attr::BIND_C)) {
Say(name,
"Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US);
} else if (symbol->IsDummy()) {
Say(name,
"Dummy argument '%s' may not appear in a COMMON block"_err_en_US);
} else if (symbol->IsFuncResult()) {
Say(name,
"Function result '%s' may not appear in a COMMON block"_err_en_US);
} else if (const DeclTypeSpec * type{symbol->GetType()}) {
if (type->category() == DeclTypeSpec::ClassStar) {
Say(name,
"Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US);
} else if (const auto *derived{type->AsDerived()}) {
auto &typeSymbol{derived->typeSymbol()};
if (!typeSymbol.attrs().test(Attr::BIND_C) &&
!typeSymbol.get<DerivedTypeDetails>().sequence()) {
Say(name,
"Derived type '%s' in COMMON block must have the BIND or"
" SEQUENCE attribute"_err_en_US);
}
CheckCommonBlockDerivedType(name, typeSymbol);
}
}
}
commonBlockInfo_ = {};
}
Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) {
return Resolve(name, currScope().MakeCommonBlock(name.source));
}
bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) {
return FindSymbol(name) != nullptr ||
HandleUnrestrictedSpecificIntrinsicFunction(name);
}
// Check if this derived type can be in a COMMON block.
void DeclarationVisitor::CheckCommonBlockDerivedType(
const SourceName &name, const Symbol &typeSymbol) {
if (const auto *scope{typeSymbol.scope()}) {
for (const auto &pair : *scope) {
const Symbol &component{*pair.second};
if (component.attrs().test(Attr::ALLOCATABLE)) {
Say2(name,
"Derived type variable '%s' may not appear in a COMMON block"
" due to ALLOCATABLE component"_err_en_US,
component.name(), "Component with ALLOCATABLE attribute"_en_US);
return;
}
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
if (details->init()) {
Say2(name,
"Derived type variable '%s' may not appear in a COMMON block"
" due to component with default initialization"_err_en_US,
component.name(), "Component with default initialization"_en_US);
return;
}
if (const auto *type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
CheckCommonBlockDerivedType(name, derived->typeSymbol());
}
}
}
}
}
}
bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction(
const parser::Name &name) {
if (context()
.intrinsics()
.IsUnrestrictedSpecificIntrinsicFunction(name.source.ToString())
.has_value()) {
// Unrestricted specific intrinsic function names (e.g., "cos")
// are acceptable as procedure interfaces.
Scope *scope{&currScope()};
while (scope->kind() == Scope::Kind::DerivedType) {
scope = &scope->parent();
}
Symbol &symbol{MakeSymbol(*scope, name.source, Attrs{Attr::INTRINSIC})};
symbol.set_details(MiscDetails{MiscDetails::Kind::SpecificIntrinsic});
CHECK(symbol.HasExplicitInterface());
Resolve(name, symbol);
return true;
} else {
return false;
}
}
Symbol *DeclarationVisitor::DeclareLocalEntity(const parser::Name &name) {
auto *prev{FindSymbol(name)};
bool implicit{false};
if (prev == nullptr) {
// Declare the name as an object in the enclosing scope so that
// the name can't be repurposed there later as something else.
prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
ApplyImplicitRules(*prev);
implicit = true;
}
if (!ConvertToObjectEntity(*prev) || prev->attrs().test(Attr::PARAMETER)) {
SayWithDecl(
name, *prev, "Locality attribute not allowed on '%s'"_err_en_US);
return nullptr;
}
if (prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
return nullptr;
}
name.symbol = nullptr;
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})};
if (auto *type{prev->GetType()}) {
if (implicit) {
ApplyImplicitRules(symbol);
} else {
symbol.SetType(*type);
}
}
return &symbol;
}
Symbol *DeclarationVisitor::DeclareStatementEntity(const parser::Name &name,
const std::optional<parser::IntegerTypeSpec> &type) {
const DeclTypeSpec *declTypeSpec{nullptr};
if (auto *prev{FindSymbol(name)}) {
if (prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
return nullptr;
}
name.symbol = nullptr;
declTypeSpec = prev->GetType();
}
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})};
if (!symbol.has<ObjectEntityDetails>()) {
return nullptr; // error was reported in DeclareEntity
}
if (type.has_value()) {
declTypeSpec = ProcessTypeSpec(*type);
}
if (declTypeSpec != nullptr) {
SetType(name, *declTypeSpec);
} else {
ApplyImplicitRules(symbol);
}
return Resolve(name, &symbol);
}
// Set the type of an entity or report an error.
void DeclarationVisitor::SetType(
const parser::Name &name, const DeclTypeSpec &type) {
CHECK(name.symbol);
auto &symbol{*name.symbol};
auto *prevType{symbol.GetType()};
if (!prevType) {
symbol.SetType(type);
} else if (symbol.has<UseDetails>()) {
// error recovery case, redeclaration of use-associated name
} else if (!symbol.test(Symbol::Flag::Implicit)) {
SayWithDecl(
name, symbol, "The type of '%s' has already been declared"_err_en_US);
} else if (type != *prevType) {
SayWithDecl(name, symbol,
"The type of '%s' has already been implicitly declared"_err_en_US);
} else {
symbol.set(Symbol::Flag::Implicit, false);
}
}
// Find the Symbol for this derived type.
const Symbol *DeclarationVisitor::ResolveDerivedType(const parser::Name &name) {
const Symbol *symbol{FindSymbol(name)};
if (!symbol) {
Say(name, "Derived type '%s' not found"_err_en_US);
return nullptr;
}
if (CheckUseError(name)) {
return nullptr;
}
symbol = &symbol->GetUltimate();
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
if (details->derivedType()) {
symbol = details->derivedType();
}
}
if (!symbol->has<DerivedTypeDetails>()) {
Say(name, "'%s' is not a derived type"_err_en_US);
return nullptr;
}
return symbol;
}
// Check this symbol suitable as a type-bound procedure - C769
bool DeclarationVisitor::CanBeTypeBoundProc(const Symbol &symbol) {
if (symbol.has<SubprogramNameDetails>()) {
return symbol.owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) {
return symbol.owner().kind() == Scope::Kind::Module ||
details->isInterface();
} else {
return false;
}
}
Symbol *DeclarationVisitor::FindExplicitInterface(const parser::Name &name) {
auto *symbol{FindSymbol(name)};
if (!symbol) {
Say(name, "Explicit interface '%s' not found"_err_en_US);
} else if (!symbol->HasExplicitInterface()) {
SayWithDecl(name, *symbol,
"'%s' is not an abstract interface or a procedure with an"
" explicit interface"_err_en_US);
symbol = nullptr;
}
return symbol;
}
// Create a symbol for a type parameter, component, or procedure binding in
// the current derived type scope. Return false on error.
Symbol *DeclarationVisitor::MakeTypeSymbol(
const parser::Name &name, Details &&details) {
return Resolve(name, MakeTypeSymbol(name.source, std::move(details)));
}
Symbol *DeclarationVisitor::MakeTypeSymbol(
const SourceName &name, Details &&details) {
Scope &derivedType{currScope()};
CHECK(derivedType.kind() == Scope::Kind::DerivedType);
if (auto *symbol{FindInScope(derivedType, name)}) {
Say2(name,
"Type parameter, component, or procedure binding '%s'"
" already defined in this type"_err_en_US,
*symbol, "Previous definition of '%s'"_en_US);
return nullptr;
} else {
auto attrs{GetAttrs()};
// Apply binding-private-stmt if present and this is a procedure binding
if (derivedTypeInfo_.privateBindings &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) &&
std::holds_alternative<ProcBindingDetails>(details)) {
attrs.set(Attr::PRIVATE);
}
Symbol &result{MakeSymbol(name, attrs, std::move(details))};
if (result.has<TypeParamDetails>()) {
derivedType.symbol()->get<DerivedTypeDetails>().add_paramDecl(result);
}
return &result;
}
}
// Return true if it is ok to declare this component in the current scope.
// Otherwise, emit an error and return false.
bool DeclarationVisitor::OkToAddComponent(
const parser::Name &name, const Symbol *extends) {
for (const Scope *scope{&currScope()}; scope != nullptr;) {
CHECK(scope->kind() == Scope::Kind::DerivedType);
if (auto *prev{FindInScope(*scope, name)}) {
auto msg{""_en_US};
if (extends != nullptr) {
msg = "Type cannot be extended as it has a component named"
" '%s'"_err_en_US;
} else if (prev->test(Symbol::Flag::ParentComp)) {
msg = "'%s' is a parent type of this type and so cannot be"
" a component"_err_en_US;
} else if (scope != &currScope()) {
msg = "Component '%s' is already declared in a parent of this"
" derived type"_err_en_US;
} else {
msg = "Component '%s' is already declared in this"
" derived type"_err_en_US;
}
Say2(name, std::move(msg), *prev, "Previous declaration of '%s'"_en_US);
return false;
}
if (scope == &currScope() && extends != nullptr) {
// The parent component has not yet been added to the scope.
scope = extends->scope();
} else {
scope = scope->GetDerivedTypeParent();
}
}
return true;
}
ParamValue DeclarationVisitor::GetParamValue(const parser::TypeParamValue &x) {
return std::visit(
common::visitors{
[=](const parser::ScalarIntExpr &x) {
return ParamValue{EvaluateIntExpr(x)};
},
[](const parser::Star &) { return ParamValue::Assumed(); },
[](const parser::TypeParamValue::Deferred &) {
return ParamValue::Deferred();
},
},
x.u);
}
// ConstructVisitor implementation
bool ConstructVisitor::Pre(const parser::ConcurrentHeader &) {
BeginDeclTypeSpec();
return true;
}
void ConstructVisitor::Post(const parser::ConcurrentHeader &) {
EndDeclTypeSpec();
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) {
for (auto &name : x.v) {
if (auto *symbol{DeclareLocalEntity(name)}) {
symbol->set(Symbol::Flag::LocalityLocal);
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) {
for (auto &name : x.v) {
if (auto *symbol{DeclareLocalEntity(name)}) {
symbol->set(Symbol::Flag::LocalityLocalInit);
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) {
for (auto &name : x.v) {
if (auto *prev{FindSymbol(name)}) {
if (prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
}
auto &symbol{MakeSymbol(name, HostAssocDetails{*prev})};
symbol.set(Symbol::Flag::LocalityShared);
} else {
Say(name, "Variable '%s' not found"_err_en_US);
context().SetError(
MakeSymbol(name, ObjectEntityDetails{EntityDetails{}}));
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::AcSpec &x) {
ProcessTypeSpec(x.type);
PushScope(Scope::Kind::ImpliedDos, nullptr);
Walk(x.values);
PopScope();
return false;
}
bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) {
auto &values{std::get<std::list<parser::AcValue>>(x.t)};
auto &control{std::get<parser::AcImpliedDoControl>(x.t)};
auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(control.t)};
auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
DeclareStatementEntity(bounds.name.thing.thing, type);
Walk(bounds);
Walk(values);
return false;
}
bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) {
auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)};
auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)};
auto &bounds{std::get<parser::DataImpliedDo::Bounds>(x.t)};
DeclareStatementEntity(bounds.name.thing.thing, type);
Walk(bounds);
Walk(objects);
return false;
}
bool ConstructVisitor::Pre(const parser::DataStmtObject &x) {
std::visit(
common::visitors{
[&](const common::Indirection<parser::Variable> &y) {
Walk(y.value());
},
[&](const parser::DataImpliedDo &y) {
PushScope(Scope::Kind::ImpliedDos, nullptr);
Walk(y);
PopScope();
},
},
x.u);
return false;
}
bool ConstructVisitor::Pre(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
PushScope(Scope::Kind::Block, nullptr);
}
return true;
}
void ConstructVisitor::Post(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
PopScope();
}
}
void ConstructVisitor::Post(const parser::ConcurrentControl &x) {
const auto &name{std::get<parser::Name>(x.t)};
auto *prev{FindSymbol(name)};
if (prev) {
if (prev->owner().kind() == Scope::Kind::Forall ||
prev->owner() == currScope()) {
SayAlreadyDeclared(name, *prev);
return;
}
name.symbol = nullptr;
}
auto &symbol{DeclareObjectEntity(name, {})};
if (symbol.GetType()) {
// type came from explicit type-spec
} else if (!prev) {
ApplyImplicitRules(symbol);
} else if (!prev->has<ObjectEntityDetails>() && !prev->has<EntityDetails>()) {
Say2(name, "Index name '%s' conflicts with existing identifier"_err_en_US,
*prev, "Previous declaration of '%s'"_en_US);
return;
} else {
if (auto *type{prev->GetType()}) {
symbol.SetType(*type);
}
if (prev->IsObjectArray()) {
SayWithDecl(name, *prev, "Index variable '%s' is not scalar"_err_en_US);
return;
}
}
EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}});
}
bool ConstructVisitor::Pre(const parser::ForallConstruct &) {
PushScope(Scope::Kind::Forall, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::ForallStmt &) {
PushScope(Scope::Kind::Forall, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::BlockStmt &x) {
CheckDef(x.v);
PushScope(Scope::Kind::Block, nullptr);
return false;
}
bool ConstructVisitor::Pre(const parser::EndBlockStmt &x) {
PopScope();
CheckRef(x.v);
return false;
}
void ConstructVisitor::Post(const parser::Selector &x) {
association_.selector = ResolveSelector(x);
}
bool ConstructVisitor::Pre(const parser::AssociateStmt &x) {
CheckDef(x.t);
PushScope(Scope::Kind::Block, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::EndAssociateStmt &x) {
PopScope();
CheckRef(x.v);
}
void ConstructVisitor::Post(const parser::Association &x) {
const auto &name{std::get<parser::Name>(x.t)};
association_.name = &name;
if (auto *symbol{MakeAssocEntity()}) {
SetTypeFromAssociation(*symbol);
SetAttrsFromAssociation(*symbol);
}
}
bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) {
CheckDef(x.t);
PushScope(Scope::Kind::Block, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::CoarrayAssociation &x) {
const auto &decl{std::get<parser::CodimensionDecl>(x.t)};
const auto &name{std::get<parser::Name>(decl.t)};
if (auto *symbol{FindInScope(currScope(), name)}) {
const auto &selector{std::get<parser::Selector>(x.t)};
if (auto sel{ResolveSelector(selector)}) {
if (!sel.variable || sel.variable->symbol->Corank() == 0) {
Say(sel.source, // C1116
"Selector in coarray association must name a coarray"_err_en_US);
} else if (auto dynType{sel.expr->GetType()}) {
if (!symbol->GetType()) {
symbol->SetType(ToDeclTypeSpec(std::move(*dynType)));
}
}
}
}
}
void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) {
PopScope();
CheckRef(x.t);
}
void ConstructVisitor::Post(const parser::SelectTypeStmt &x) {
if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
// This isn't a name in the current scope, it is in each TypeGuardStmt
MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName);
association_.name = &*name;
} else {
const auto *varName{association_.selector.variable};
if (!varName || !varName->symbol->has<ObjectEntityDetails>()) {
Say(association_.selector.source, // C1157
"Selector is not a named variable: 'associate-name =>' is required"_err_en_US);
association_ = {};
}
}
}
bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) {
PushScope(Scope::Kind::Block, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) {
PopScope();
}
void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) {
if (auto *symbol{MakeAssocEntity()}) {
if (std::holds_alternative<parser::Default>(x.u)) {
SetTypeFromAssociation(*symbol);
} else if (const auto *type{GetDeclTypeSpec()}) {
symbol->SetType(*type);
}
SetAttrsFromAssociation(*symbol);
}
}
bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) {
if (x) {
MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName});
}
return true;
}
void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) {
if (x) {
// Just add an occurrence of this name; checking is done in ValidateLabels
FindSymbol(*x);
}
}
// Make a symbol representing an associating entity from association_.
Symbol *ConstructVisitor::MakeAssocEntity() {
if (!association_.name) {
return nullptr;
}
auto &symbol{MakeSymbol(*association_.name, UnknownDetails{})};
if (symbol.has<AssocEntityDetails>() && symbol.owner() == currScope()) {
Say(*association_.name, // C1104
"The associate name '%s' is already used in this associate statement"_err_en_US);
return nullptr;
}
if (auto &expr{association_.selector.expr}) {
symbol.set_details(AssocEntityDetails{std::move(*expr)});
association_.selector.expr.reset();
} else {
symbol.set_details(AssocEntityDetails{});
}
return &symbol;
}
// Set the type of symbol based on the current association variable or expr.
void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) {
if (association_.selector.variable) {
const Symbol *varSymbol{association_.selector.variable->symbol};
CHECK(varSymbol);
if (const DeclTypeSpec * type{varSymbol->GetType()}) {
symbol.SetType(*type);
}
} else {
auto &details{symbol.get<AssocEntityDetails>()};
if (const MaybeExpr & expr{details.expr()}) {
if (std::optional<evaluate::DynamicType> type{expr->GetType()}) {
if (const auto *charExpr{
evaluate::UnwrapExpr<evaluate::Expr<evaluate::SomeCharacter>>(
*expr)}) {
symbol.SetType(ToDeclTypeSpec(std::move(*type),
FoldExpr(std::visit(
[](const auto &kindChar) { return kindChar.LEN(); },
charExpr->u))));
} else {
symbol.SetType(ToDeclTypeSpec(std::move(*type)));
}
} else {
// BOZ literal not acceptable
Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US);
}
}
}
}
// If current selector is a variable, set some of its attributes on symbol.
void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) {
if (association_.selector.variable) {
if (const auto *varSymbol{association_.selector.variable->symbol}) {
symbol.attrs() |= varSymbol->attrs() &
Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE,
Attr::CONTIGUOUS};
if (varSymbol->attrs().test(Attr::POINTER)) {
symbol.attrs().set(Attr::TARGET);
}
}
}
}
ConstructVisitor::Selector ConstructVisitor::ResolveSelector(
const parser::Selector &x) {
return std::visit(
common::visitors{
[&](const parser::Expr &y) {
return Selector{y.source, EvaluateExpr(y)};
},
[&](const parser::Variable &y) {
if (const auto *variable{ResolveVariable(y)}) {
return Selector{variable->source, EvaluateExpr(y), variable};
} else {
return Selector{};
}
},
},
x.u);
}
const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
evaluate::DynamicType &&type) {
switch (type.category()) {
case common::TypeCategory::Integer:
case common::TypeCategory::Real:
case common::TypeCategory::Complex:
return context().MakeNumericType(type.category(), type.kind());
case common::TypeCategory::Logical:
return context().MakeLogicalType(type.kind());
case common::TypeCategory::Derived:
return currScope().MakeDerivedType(
DeclTypeSpec::TypeDerived, DerivedTypeSpec{type.GetDerivedTypeSpec()});
case common::TypeCategory::Character:
default: CRASH_NO_CASE;
}
}
const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
evaluate::DynamicType &&type, SubscriptIntExpr &&length) {
CHECK(type.category() == common::TypeCategory::Character);
return currScope().MakeCharacterType(
ParamValue{SomeIntExpr{std::move(length)}}, KindExpr{type.kind()});
}
// ResolveNamesVisitor implementation
bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) {
HandleCall(Symbol::Flag::Function, x.v);
return false;
}
bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) {
HandleCall(Symbol::Flag::Subroutine, x.v);
return false;
}
bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) {
auto &scope{currScope()};
// Check C896 and C899: where IMPORT statements are allowed
switch (scope.kind()) {
case Scope::Kind::Module:
if (scope.IsModule()) {
Say("IMPORT is not allowed in a module scoping unit"_err_en_US);
return false;
} else if (x.kind == common::ImportKind::None) {
Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US);
return false;
}
break;
case Scope::Kind::MainProgram:
Say("IMPORT is not allowed in a main program scoping unit"_err_en_US);
return false;
case Scope::Kind::Subprogram:
if (scope.parent().kind() == Scope::Kind::Global) {
Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US);
return false;
}
break;
default:;
}
if (auto error{scope.SetImportKind(x.kind)}) {
Say(std::move(*error));
}
for (auto &name : x.names) {
if (FindSymbol(scope.parent(), name)) {
scope.add_importName(name.source);
} else {
Say(name, "'%s' not found in host scope"_err_en_US);
}
}
prevImportStmt_ = currStmtSource();
return false;
}
const parser::Name *DeclarationVisitor::ResolveStructureComponent(
const parser::StructureComponent &x) {
return FindComponent(ResolveDataRef(x.base), x.component);
}
const parser::Name *DeclarationVisitor::ResolveDesignator(
const parser::Designator &x) {
return std::visit(
common::visitors{
[&](const parser::DataRef &x) { return ResolveDataRef(x); },
[&](const parser::Substring &x) {
return ResolveDataRef(std::get<parser::DataRef>(x.t));
},
},
x.u);
}
const parser::Name *DeclarationVisitor::ResolveDataRef(
const parser::DataRef &x) {
return std::visit(
common::visitors{
[=](const parser::Name &y) { return ResolveName(y); },
[=](const Indirection<parser::StructureComponent> &y) {
return ResolveStructureComponent(y.value());
},
[=](const auto &y) { return ResolveDataRef(y.value().base); },
},
x.u);
}
const parser::Name *DeclarationVisitor::ResolveVariable(
const parser::Variable &x) {
return std::visit(
common::visitors{
[&](const common::Indirection<parser::Designator> &y) {
return ResolveDesignator(y.value());
},
[&](const common::Indirection<parser::FunctionReference> &y) {
const auto &proc{
std::get<parser::ProcedureDesignator>(y.value().v.t)};
return std::visit(
common::visitors{
[&](const parser::Name &z) { return &z; },
[&](const parser::ProcComponentRef &z) {
return ResolveStructureComponent(z.v.thing);
},
},
proc.u);
},
},
x.u);
}
// If implicit types are allowed, ensure name is in the symbol table.
// Otherwise, report an error if it hasn't been declared.
const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) {
if (Symbol * symbol{FindSymbol(name)}) {
if (CheckUseError(name)) {
return nullptr; // reported an error
}
if (symbol->IsDummy()) {
ApplyImplicitRules(*symbol);
}
return &name;
}
if (isImplicitNoneType()) {
Say(name, "No explicit type declared for '%s'"_err_en_US);
return nullptr;
}
// Create the symbol then ensure it is accessible
MakeSymbol(InclusiveScope(), name.source, Attrs{});
auto *symbol{FindSymbol(name)};
if (!symbol) {
Say(name,
"'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US);
return nullptr;
}
ApplyImplicitRules(*symbol);
return &name;
}
// base is a part-ref of a derived type; find the named component in its type.
// Also handles intrinsic type parameter inquiries (%kind, %len) and
// COMPLEX component references (%re, %im).
const parser::Name *DeclarationVisitor::FindComponent(
const parser::Name *base, const parser::Name &component) {
if (!base || !base->symbol) {
return nullptr;
}
auto &symbol{*base->symbol};
if (!symbol.has<AssocEntityDetails>() && !ConvertToObjectEntity(symbol)) {
SayWithDecl(*base, symbol,
"'%s' is an invalid base for a component reference"_err_en_US);
return nullptr;
}
auto *type{symbol.GetType()};
if (!type) {
return nullptr; // should have already reported error
}
if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
auto name{component.ToString()};
auto category{intrinsic->category()};
MiscDetails::Kind miscKind{MiscDetails::Kind::None};
if (name == "kind") {
miscKind = MiscDetails::Kind::KindParamInquiry;
} else if (category == TypeCategory::Character) {
if (name == "len") {
miscKind = MiscDetails::Kind::LenParamInquiry;
}
} else if (category == TypeCategory::Complex) {
if (name == "re") {
miscKind = MiscDetails::Kind::ComplexPartRe;
} else if (name == "im") {
miscKind = MiscDetails::Kind::ComplexPartIm;
}
}
if (miscKind != MiscDetails::Kind::None) {
MakePlaceholder(component, miscKind);
return nullptr;
}
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * scope{derived->scope()}) {
if (Resolve(component, FindInTypeOrParents(*scope, component.source))) {
if (CheckAccessibleComponent(component.source, *component.symbol)) {
return &component;
}
} else {
SayDerivedType(component.source,
"Component '%s' not found in derived type '%s'"_err_en_US, *scope);
}
}
return nullptr;
}
if (symbol.test(Symbol::Flag::Implicit)) {
Say(*base,
"'%s' is not an object of derived type; it is implicitly typed"_err_en_US);
} else {
SayWithDecl(
*base, symbol, "'%s' is not an object of derived type"_err_en_US);
}
return nullptr;
}
void ResolveNamesVisitor::HandleCall(
Symbol::Flag procFlag, const parser::Call &call) {
std::visit(
common::visitors{
[&](const parser::Name &x) { HandleProcedureName(procFlag, x); },
[&](const parser::ProcComponentRef &x) { Walk(x); },
},
std::get<parser::ProcedureDesignator>(call.t).u);
Walk(std::get<std::list<parser::ActualArgSpec>>(call.t));
}
void ResolveNamesVisitor::HandleProcedureName(
Symbol::Flag flag, const parser::Name &name) {
CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine);
auto *symbol{FindSymbol(name)};
if (symbol == nullptr) {
symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
Resolve(name, *symbol);
if (symbol->has<ModuleDetails>()) {
SayWithDecl(name, *symbol,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US);
return;
}
if (isImplicitNoneExternal() && !symbol->attrs().test(Attr::EXTERNAL)) {
Say(name,
"'%s' is an external procedure without the EXTERNAL"
" attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
return;
}
symbol->attrs().set(Attr::EXTERNAL);
if (!symbol->has<ProcEntityDetails>()) {
ConvertToProcEntity(*symbol);
}
if (const auto type{GetImplicitType(*symbol)}) {
symbol->get<ProcEntityDetails>().interface().set_type(*type);
}
SetProcFlag(name, *symbol, flag);
} else if (symbol->has<UnknownDetails>()) {
CHECK(!"unexpected UnknownDetails");
} else if (CheckUseError(name)) {
// error was reported
} else {
symbol = Resolve(name, &symbol->GetUltimate());
ConvertToProcEntity(*symbol);
if (!SetProcFlag(name, *symbol, flag)) {
return; // reported error
}
if (symbol->has<SubprogramNameDetails>() || symbol->has<GenericDetails>() ||
symbol->has<DerivedTypeDetails>() || symbol->has<SubprogramDetails>() ||
symbol->has<ProcEntityDetails>() ||
symbol->has<ObjectEntityDetails>()) {
// these are all valid as procedure-designators
} else if (symbol->test(Symbol::Flag::Implicit)) {
Say(name,
"Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US);
} else {
SayWithDecl(name, *symbol,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US);
}
}
}
// Check and set the Function or Subroutine flag on symbol; false on error.
bool ResolveNamesVisitor::SetProcFlag(
const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) {
SayWithDecl(
name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
return false;
} else if (symbol.test(Symbol::Flag::Subroutine) &&
flag == Symbol::Flag::Function) {
SayWithDecl(
name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US);
return false;
} else if (symbol.has<ProcEntityDetails>()) {
symbol.set(flag); // in case it hasn't been set yet
if (flag == Symbol::Flag::Function) {
ApplyImplicitRules(symbol);
}
} else if (symbol.GetType() != nullptr && flag == Symbol::Flag::Subroutine) {
SayWithDecl(
name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
}
return true;
}
bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))};
if (currScope().kind() != Scope::Kind::Module) {
Say(*currStmtSource(),
"%s statement may only appear in the specification part of a module"_err_en_US,
EnumToString(accessAttr));
return false;
}
const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)};
if (accessIds.empty()) {
if (prevAccessStmt_) {
Say("The default accessibility of this module has already been declared"_err_en_US)
.Attach(*prevAccessStmt_, "Previous declaration"_en_US);
}
prevAccessStmt_ = currStmtSource();
defaultAccess_ = accessAttr;
} else {
for (const auto &accessId : accessIds) {
std::visit(
common::visitors{
[=](const parser::Name &y) {
Resolve(y, SetAccess(y.source, accessAttr));
},
[=](const Indirection<parser::GenericSpec> &y) {
auto info{GenericSpecInfo{y.value()}};
info.Resolve(&SetAccess(info.symbolName(), accessAttr));
},
},
accessId.u);
}
}
return false;
}
// Set the access specification for this name.
Symbol &ModuleVisitor::SetAccess(const SourceName &name, Attr attr) {
Symbol &symbol{MakeSymbol(name)};
Attrs &attrs{symbol.attrs()};
if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
// PUBLIC/PRIVATE already set: make it a fatal error if it changed
Attr prev = attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE;
auto msg{IsDefinedOperator(name)
? "The accessibility of operator '%s' has already been specified as %s"_en_US
: "The accessibility of '%s' has already been specified as %s"_en_US};
Say(name, WithIsFatal(msg, attr != prev), name, EnumToString(prev));
} else {
attrs.set(attr);
}
return symbol;
}
static bool NeedsExplicitType(const Symbol &symbol) {
if (symbol.has<UnknownDetails>()) {
return true;
} else if (const auto *details{symbol.detailsIf<EntityDetails>()}) {
return !details->type();
} else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
return !details->type();
} else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
return details->interface().symbol() == nullptr &&
details->interface().type() == nullptr;
} else {
return false;
}
}
void ResolveNamesVisitor::Post(const parser::SpecificationPart &) {
badStmtFuncFound_ = false;
CheckImports();
bool inModule{currScope().kind() == Scope::Kind::Module};
for (auto &pair : currScope()) {
auto &symbol{*pair.second};
if (NeedsExplicitType(symbol)) {
ApplyImplicitRules(symbol);
}
if (symbol.has<GenericDetails>()) {
CheckGenericProcedures(symbol);
}
if (inModule && symbol.attrs().test(Attr::EXTERNAL) &&
!symbol.test(Symbol::Flag::Function)) {
// in a module, external proc without return type is subroutine
symbol.set(Symbol::Flag::Subroutine);
}
}
CheckSaveStmts();
CheckCommonBlocks();
}
void ResolveNamesVisitor::CheckImports() {
auto &scope{currScope()};
switch (scope.GetImportKind()) {
case common::ImportKind::None: break;
case common::ImportKind::All:
// C8102: all entities in host must not be hidden
for (const auto &pair : scope.parent()) {
auto &name{pair.first};
if (name != scope.name()) {
CheckImport(*prevImportStmt_, name);
}
}
break;
case common::ImportKind::Default:
case common::ImportKind::Only:
// C8102: entities named in IMPORT must not be hidden
for (auto &name : scope.importNames()) {
CheckImport(name, name);
}
break;
}
}
void ResolveNamesVisitor::CheckImport(
const SourceName &location, const SourceName &name) {
if (auto *symbol{FindInScope(currScope(), name)}) {
Say(location, "'%s' from host is not accessible"_err_en_US, name)
.Attach(symbol->name(), "'%s' is hidden by this entity"_en_US,
symbol->name());
}
}
bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) {
return CheckNotInBlock("IMPLICIT") && ImplicitRulesVisitor::Pre(x);
}
void ResolveNamesVisitor::Post(const parser::PointerObject &x) {
std::visit(
common::visitors{
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
void ResolveNamesVisitor::Post(const parser::AllocateObject &x) {
std::visit(
common::visitors{
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) {
const auto &dataRef{std::get<parser::DataRef>(x.t)};
const auto &bounds{std::get<parser::PointerAssignmentStmt::Bounds>(x.t)};
const auto &expr{std::get<parser::Expr>(x.t)};
ResolveDataRef(dataRef);
Walk(bounds);
// Resolve unrestricted specific intrinsic procedures as in "p => cos".
if (const parser::Name * name{parser::Unwrap<parser::Name>(expr)}) {
if (NameIsKnownOrIntrinsic(*name)) {
return false;
}
}
Walk(expr);
return false;
}
void ResolveNamesVisitor::Post(const parser::Designator &x) {
ResolveDesignator(x);
}
void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) {
ResolveStructureComponent(x.v.thing);
}
void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) {
DeclTypeSpecVisitor::Post(x);
ConstructVisitor::Post(x);
}
bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) {
if (!HandleStmtFunction(x)) {
// This is an array element assignment: resolve names of indices
const auto &names{std::get<std::list<parser::Name>>(x.t)};
for (auto &name : names) {
ResolveName(name);
}
}
return true;
}
bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) {
const parser::Name &name{x.v};
if (FindSymbol(name)) {
// OK
} else if (IsLogicalConstant(context(), name.source)) {
Say(name,
"Logical constant '%s' may not be used as a defined operator"_err_en_US);
} else {
Say(name, "Defined operator '%s' not found"_err_en_US);
}
return false;
}
bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) {
auto root{ProgramTree::Build(x)};
SetScope(context().globalScope());
ResolveSpecificationParts(root);
SetScope(context().globalScope());
ResolveExecutionParts(root);
return false;
}
// Build the scope tree and resolve names in the specification parts of this
// node and its children
void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) {
if (!BeginScope(node)) {
return; // an error prevented scope from being created
}
Scope &scope{currScope()};
node.set_scope(scope);
AddSubpNames(node);
std::visit([&](const auto *x) { Walk(*x); }, node.stmt());
Walk(node.spec());
if (node.IsModule()) {
ApplyDefaultAccess();
}
for (auto &child : node.children()) {
ResolveSpecificationParts(child);
}
// Subtlety: PopScope() is not called here because we want to defer
// conversions of uncategorized entities into objects until after
// we have traversed the executable part of the subprogram.
// Function results, however, are converted now so that they can
// be used in executable parts.
if (Symbol * symbol{currScope().symbol()}) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
if (details->isFunction()) {
Symbol &result{const_cast<Symbol &>(details->result())};
ConvertToObjectEntity(result);
}
}
}
SetScope(currScope().parent());
}
// Add SubprogramNameDetails symbols for contained subprograms
void ResolveNamesVisitor::AddSubpNames(const ProgramTree &node) {
auto kind{
node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal};
for (const auto &child : node.children()) {
auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind})};
symbol.set(child.GetSubpFlag());
}
}
// Push a new scope for this node or return false on error.
bool ResolveNamesVisitor::BeginScope(const ProgramTree &node) {
switch (node.GetKind()) {
case ProgramTree::Kind::Program:
PushScope(Scope::Kind::MainProgram,
&MakeSymbol(node.name(), MainProgramDetails{}));
return true;
case ProgramTree::Kind::Function:
case ProgramTree::Kind::Subroutine:
return BeginSubprogram(
node.name(), node.GetSubpFlag(), node.HasModulePrefix());
case ProgramTree::Kind::MpSubprogram:
return BeginSubprogram(
node.name(), Symbol::Flag::Subroutine, /*hasModulePrefix*/ true);
case ProgramTree::Kind::Module: BeginModule(node.name(), false); return true;
case ProgramTree::Kind::Submodule:
return BeginSubmodule(node.name(), node.GetParentId());
default: CRASH_NO_CASE;
}
}
// Resolve names in the execution part of this node and its children
void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) {
if (!node.scope()) {
return; // error occurred creating scope
}
SetScope(*node.scope());
if (const auto *exec{node.exec()}) {
Walk(*exec);
}
PopScope(); // converts unclassified entities into objects
for (const auto &child : node.children()) {
ResolveExecutionParts(child);
}
}
void ResolveNamesVisitor::Post(const parser::Program &) {
// ensure that all temps were deallocated
CHECK(!attrs_);
CHECK(!GetDeclTypeSpec());
}
bool ResolveNames(SemanticsContext &context, const parser::Program &program) {
ResolveNamesVisitor{context}.Walk(program);
return !context.AnyFatalError();
}
}