Find a file
sameeran joshi 807fe05d35 [flang][docs] Doxygen support in flang.
Summary:
    Added support for doxygen-style documentation generation from source code.
    Added -DLLVM_ENABLE_DOXYGEN=ON -DFLANG_INCLUDE_DOCS=ON flags to cmake.
    Added the target doxygen-flang for building doxygen
    Updated README.txt

    Reviewers: DavidTruby, richard.barton.arm, sscalpone,  mehdi_amini, jdoerfert

    Reviewed By: DavidTruby, richard.barton.arm, sscalpone

    Previous review: https://github.com/flang-compiler/f18/pull/1065

    Differential Revision: https://reviews.llvm.org/D78136
2020-04-27 15:02:29 +05:30
clang [analyzer] On-demand parsing capability for CTU 2020-04-27 11:20:35 +02:00
clang-tools-extra [clangd] Strip /showIncludes in clangd compile commands 2020-04-26 18:57:39 -07:00
compiler-rt [builtins] Support architectures with 16-bit int 2020-04-26 01:22:10 +02:00
debuginfo-tests [dexter] Require python >= 3.6 2020-04-23 11:46:10 +02:00
flang [flang][docs] Doxygen support in flang. 2020-04-27 15:02:29 +05:30
libc [libc] Add spec for sigdelset and sigfillset. 2020-04-23 16:38:47 -07:00
libclc libclc: Use temporary files rather than a pipe 2020-04-14 10:03:27 -04:00
libcxx [libc++] Add UNSUPPORTED markup for shared_mutex and shared_timed_mutex tests 2020-04-27 04:23:58 -04:00
libcxxabi [libc++/abi] Provide an option to turn on forgiving dynamic_cast when building libc++abi 2020-04-22 16:24:26 -04:00
libunwind [libc++/abi/unwind] Rename Lit features for no exceptions to 'no-exceptions' 2020-04-22 08:25:27 -04:00
lld [lld][WebAssembly] Fix crash on function signature mismatch with --relocatable 2020-04-25 10:26:11 -07:00
lldb [lldb][TypeSystemClang] Desugar an elaborated type before checking if it's a typedef or getting a typedefed type 2020-04-27 11:08:19 +03:00
llvm [ARM] Replace hasNoSchedulingInfo with UnsupportedFeatures in the A57 schedule 2020-04-27 10:13:29 +01:00
mlir [MLIR] Remove document references to gpu.kernel_module and gpu.kernel. 2020-04-27 10:00:15 +02:00
openmp [libomptarget] Initialize reference parameter IsNew within Device::getOrAllocTgtPtr 2020-04-24 15:33:37 -05:00
parallel-libs
polly [polly] Don't include PassSupport.h directly - include via Pass.h 2020-04-26 15:51:32 +01:00
pstl [pstl] Added missing double-underscore prefixes to some types 2020-04-15 22:06:58 +02:00
utils/arcanist Use in-tree clang-format-diff.py as Arcanist linter 2020-04-06 12:02:20 -04:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
CONTRIBUTING.md
README.md Revert "This is a test commit." 2020-04-11 15:55:07 -07:00

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.