Find a file
Jacques Pienaar 7d6e589fc8 Revert "[mlir][memref] Implement lowering of memref.copy to llvm"
This reverts commit e939644977.

Breaks Windows build.
2021-06-28 07:50:11 -07:00
.github
clang [Analyzer] Attempt to fix windows bots test failure b/c of new-line 2021-06-28 15:41:30 +02:00
clang-tools-extra [clang-tidy][NFC] Fix buildbot failures in 'bugprone-easily-swappable-parameters' 2021-06-28 11:19:16 +02:00
compiler-rt [compiler-rt][asan] Disable two tests on Arm Thumb 2021-06-28 10:34:37 +00:00
cross-project-tests [cross-project-tests] Add/update check-* targets for cross-project-tests 2021-06-28 11:31:41 +01:00
flang [flang] Fix generic/specific procedure confusion 2021-06-25 11:54:29 -07:00
libc [libc] Use __builtin_ctzll instead of __builtin_ctzl in elements_x86.h. 2021-06-25 22:58:13 +00:00
libclc
libcxx [libc++] Remove unnecessary reinterpret_cast from typeinfo 2021-06-28 10:00:33 -04:00
libcxxabi
libunwind
lld [lld][MachO] Temporarily require 64 bit build for dead-strip.s 2021-06-28 09:37:45 +00:00
lldb [LLDB] Silence warnings in cli-wrapper-mpxtable.cpp 2021-06-28 02:36:14 +00:00
llvm [AIX] Use less than or equal to for some alignment tests on AIX 2021-06-28 10:32:32 -04:00
mlir Revert "[mlir][memref] Implement lowering of memref.copy to llvm" 2021-06-28 07:50:11 -07:00
openmp [AMDGPU][Libomptarget] Collect allocatable memory pools using HSA 2021-06-28 11:28:04 +00:00
parallel-libs
polly
pstl
runtimes
utils [Bazel] Update for 0813700de1 2021-06-27 08:33:03 -07:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md
README.md [RFC][debuginfo-test] Rename debug-info lit tests for general purposes 2021-06-28 11:31:40 +01:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or cross-project-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.