llvm/mlir/lib/IR/Dominance.cpp
Chris Lattner 412ae15de4 [Dominators] Rewrite the dominator implementation for efficiency. NFC.
The previous impl densely scanned the entire region starting with an op
when dominators were created, creating a DominatorTree for every region.

This is extremely expensive up front -- particularly for clients like
Linalg/Transforms/Fusion.cpp that construct DominanceInfo for a single
query.  It is also extremely memory wasteful for IRs that use single
block regions commonly (e.g. affine.for) because it's making a
dominator tree for a region that has trivial dominance.  The
implementation also had numerous unnecessary minor efficiencies, e.g.
doing multiple walks of the region tree or tryGetBlocksInSameRegion
building a DenseMap that it didn't need.

This patch switches to an approach where [Post]DominanceInfo is free
to construct, and which lazily constructs DominatorTree's for any
multiblock regions that it needs.  This avoids the up-front cost
entirely, making its runtime proportional to the complexity of the
region tree instead of # ops in a region.  This also avoids the memory
and time cost of creating DominatorTree's for single block regions.

Finally this rewrites the implementation for simplicity and to avoids
the constant factor problems the old implementation had.

Differential Revision: https://reviews.llvm.org/D103384
2021-06-01 14:46:37 -07:00

352 lines
13 KiB
C++

//===- Dominance.cpp - Dominator analysis for CFGs ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of dominance related classes and instantiations of extern
// templates.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/RegionKindInterface.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace mlir;
using namespace mlir::detail;
template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/false>;
template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/true>;
template class llvm::DomTreeNodeBase<Block>;
//===----------------------------------------------------------------------===//
// DominanceInfoBase
//===----------------------------------------------------------------------===//
template <bool IsPostDom>
DominanceInfoBase<IsPostDom>::~DominanceInfoBase() {
for (auto entry : dominanceInfos)
delete entry.second.getPointer();
}
/// Return the dom tree and "hasSSADominance" bit for the given region. The
/// DomTree will be null for single-block regions. This lazily constructs the
/// DomTree on demand when needsDomTree=true.
template <bool IsPostDom>
auto DominanceInfoBase<IsPostDom>::getDominanceInfo(Region *region,
bool needsDomTree) const
-> llvm::PointerIntPair<DomTree *, 1, bool> {
// Check to see if we already have this information.
auto itAndInserted = dominanceInfos.insert({region, {nullptr, true}});
auto &entry = itAndInserted.first->second;
// This method builds on knowledge that multi-block regions always have
// SSADominance. Graph regions are only allowed to be single-block regions,
// but of course single-block regions may also have SSA dominance.
if (!itAndInserted.second) {
// We do have it, so we know the 'hasSSADominance' bit is correct, but we
// may not have constructed a DominatorTree yet. If we need it, build it.
if (needsDomTree && !entry.getPointer() && !region->hasOneBlock()) {
auto *domTree = new DomTree();
domTree->recalculate(*region);
entry.setPointer(domTree);
}
return entry;
}
// Nope, lazily construct it. Create a DomTree if this is a multi-block
// region.
if (!region->hasOneBlock()) {
auto *domTree = new DomTree();
domTree->recalculate(*region);
entry.setPointer(domTree);
// Multiblock regions always have SSA dominance, leave `second` set to true.
return entry;
}
// Single block regions have a more complicated predicate.
if (Operation *parentOp = region->getParentOp()) {
if (!parentOp->isRegistered()) { // We don't know about unregistered ops.
entry.setInt(false);
} else if (auto regionKindItf = dyn_cast<RegionKindInterface>(parentOp)) {
// Registered ops can opt-out of SSA dominance with
// RegionKindInterface.
entry.setInt(regionKindItf.hasSSADominance(region->getRegionNumber()));
}
}
return entry;
}
/// Return the ancestor block enclosing the specified block. This returns null
/// if we reach the top of the hierarchy.
static Block *getAncestorBlock(Block *block) {
if (Operation *ancestorOp = block->getParentOp())
return ancestorOp->getBlock();
return nullptr;
}
/// Walks up the list of containers of the given block and calls the
/// user-defined traversal function for every pair of a region and block that
/// could be found during traversal. If the user-defined function returns true
/// for a given pair, traverseAncestors will return the current block. Nullptr
/// otherwise.
template <typename FuncT>
static Block *traverseAncestors(Block *block, const FuncT &func) {
do {
// Invoke the user-defined traversal function for each block.
if (func(block))
return block;
} while ((block = getAncestorBlock(block)));
return nullptr;
}
/// Tries to update the given block references to live in the same region by
/// exploring the relationship of both blocks with respect to their regions.
static bool tryGetBlocksInSameRegion(Block *&a, Block *&b) {
// If both block do not live in the same region, we will have to check their
// parent operations.
Region *aRegion = a->getParent();
Region *bRegion = b->getParent();
if (aRegion == bRegion)
return true;
// Iterate over all ancestors of `a`, counting the depth of `a`. If one of
// `a`s ancestors are in the same region as `b`, then we stop early because we
// found our NCA.
size_t aRegionDepth = 0;
if (Block *aResult = traverseAncestors(a, [&](Block *block) {
++aRegionDepth;
return block->getParent() == bRegion;
})) {
a = aResult;
return true;
}
// Iterate over all ancestors of `b`, counting the depth of `b`. If one of
// `b`s ancestors are in the same region as `a`, then we stop early because
// we found our NCA.
size_t bRegionDepth = 0;
if (Block *bResult = traverseAncestors(b, [&](Block *block) {
++bRegionDepth;
return block->getParent() == aRegion;
})) {
b = bResult;
return true;
}
// Otherwise we found two blocks that are siblings at some level. Walk the
// deepest one up until we reach the top or find an NCA.
while (true) {
if (aRegionDepth > bRegionDepth) {
a = getAncestorBlock(a);
--aRegionDepth;
} else if (aRegionDepth < bRegionDepth) {
b = getAncestorBlock(b);
--bRegionDepth;
} else {
break;
}
}
// If we found something with the same level, then we can march both up at the
// same time from here on out.
while (a) {
// If they are at the same level, and have the same parent region then we
// succeeded.
if (a->getParent() == b->getParent())
return true;
a = getAncestorBlock(a);
b = getAncestorBlock(b);
}
// They don't share an NCA, perhaps they are in different modules or
// something.
return false;
}
template <bool IsPostDom>
Block *
DominanceInfoBase<IsPostDom>::findNearestCommonDominator(Block *a,
Block *b) const {
// If either a or b are null, then conservatively return nullptr.
if (!a || !b)
return nullptr;
// If they are the same block, then we are done.
if (a == b)
return a;
// Try to find blocks that are in the same region.
if (!tryGetBlocksInSameRegion(a, b))
return nullptr;
// If the common ancestor in a common region is the same block, then return
// it.
if (a == b)
return a;
// Otherwise, there must be multiple blocks in the region, check the
// DomTree.
return getDomTree(a->getParent()).findNearestCommonDominator(a, b);
}
/// Return true if the specified block A properly dominates block B.
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::properlyDominates(Block *a, Block *b) const {
assert(a && b && "null blocks not allowed");
// A block dominates itself but does not properly dominate itself.
if (a == b)
return false;
// If both blocks are not in the same region, `a` properly dominates `b` if
// `b` is defined in an operation region that (recursively) ends up being
// dominated by `a`. Walk up the list of containers enclosing B.
Region *regionA = a->getParent();
if (regionA != b->getParent()) {
b = regionA ? regionA->findAncestorBlockInRegion(*b) : nullptr;
// If we could not find a valid block b then it is a not a dominator.
if (b == nullptr)
return false;
// Check to see if the ancestor of `b` is the same block as `a`. A properly
// dominates B if it contains an op that contains the B block.
if (a == b)
return true;
}
// Otherwise, they are two different blocks in the same region, use DomTree.
return getDomTree(regionA).properlyDominates(a, b);
}
/// Return true if the specified block is reachable from the entry block of
/// its region.
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::isReachableFromEntry(Block *a) const {
// If this is the first block in its region, then it is obviously reachable.
Region *region = a->getParent();
if (&region->front() == a)
return true;
// Otherwise this is some block in a multi-block region. Check DomTree.
return getDomTree(region).isReachableFromEntry(a);
}
template class detail::DominanceInfoBase</*IsPostDom=*/true>;
template class detail::DominanceInfoBase</*IsPostDom=*/false>;
//===----------------------------------------------------------------------===//
// DominanceInfo
//===----------------------------------------------------------------------===//
/// Return true if operation `a` properly dominates operation `b`. The
/// 'enclosingOpOk' flag says whether we should return true if the `b` op is
/// enclosed by a region on 'a'.
bool DominanceInfo::properlyDominatesImpl(Operation *a, Operation *b,
bool enclosingOpOk) const {
Block *aBlock = a->getBlock(), *bBlock = b->getBlock();
assert(aBlock && bBlock && "operations must be in a block");
// An instruction dominates, but does not properlyDominate, itself unless this
// is a graph region.
if (a == b)
return !hasSSADominance(aBlock);
// If these ops are in different regions, then normalize one into the other.
Region *aRegion = aBlock->getParent();
if (aRegion != bBlock->getParent()) {
// Scoot up b's region tree until we find an operation in A's region that
// encloses it. If this fails, then we know there is no post-dom relation.
b = aRegion ? aRegion->findAncestorOpInRegion(*b) : nullptr;
if (!b)
return false;
bBlock = b->getBlock();
assert(bBlock->getParent() == aRegion);
// If 'a' encloses 'b', then we consider it to dominate.
if (a == b && enclosingOpOk)
return true;
}
// Ok, they are in the same region now.
if (aBlock == bBlock) {
// Dominance changes based on the region type. In a region with SSA
// dominance, uses inside the same block must follow defs. In other
// regions kinds, uses and defs can come in any order inside a block.
if (hasSSADominance(aBlock)) {
// If the blocks are the same, then check if b is before a in the block.
return a->isBeforeInBlock(b);
}
return true;
}
// If the blocks are different, use DomTree to resolve the query.
return getDomTree(aRegion).properlyDominates(aBlock, bBlock);
}
/// Return true if the `a` value properly dominates operation `b`, i.e if the
/// operation that defines `a` properlyDominates `b` and the operation that
/// defines `a` does not contain `b`.
bool DominanceInfo::properlyDominates(Value a, Operation *b) const {
// block arguments properly dominate all operations in their own block, so
// we use a dominates check here, not a properlyDominates check.
if (auto blockArg = a.dyn_cast<BlockArgument>())
return dominates(blockArg.getOwner(), b->getBlock());
// `a` properlyDominates `b` if the operation defining `a` properlyDominates
// `b`, but `a` does not itself enclose `b` in one of its regions.
return properlyDominatesImpl(a.getDefiningOp(), b, /*enclosingOpOk=*/false);
}
//===----------------------------------------------------------------------===//
// PostDominanceInfo
//===----------------------------------------------------------------------===//
/// Returns true if statement 'a' properly postdominates statement b.
bool PostDominanceInfo::properlyPostDominates(Operation *a, Operation *b) {
auto *aBlock = a->getBlock(), *bBlock = b->getBlock();
assert(aBlock && bBlock && "operations must be in a block");
// An instruction postDominates, but does not properlyPostDominate, itself
// unless this is a graph region.
if (a == b)
return !hasSSADominance(aBlock);
// If these ops are in different regions, then normalize one into the other.
Region *aRegion = aBlock->getParent();
if (aRegion != bBlock->getParent()) {
// Scoot up b's region tree until we find an operation in A's region that
// encloses it. If this fails, then we know there is no post-dom relation.
b = aRegion ? aRegion->findAncestorOpInRegion(*b) : nullptr;
if (!b)
return false;
bBlock = b->getBlock();
assert(bBlock->getParent() == aRegion);
// If 'a' encloses 'b', then we consider it to postdominate.
if (a == b)
return true;
}
// Ok, they are in the same region. If they are in the same block, check if b
// is before a in the block.
if (aBlock == bBlock) {
// Dominance changes based on the region type.
if (hasSSADominance(aBlock)) {
// If the blocks are the same, then check if b is before a in the block.
return b->isBeforeInBlock(a);
}
return true;
}
// If the blocks are different, check if a's block post dominates b's.
return getDomTree(aRegion).properlyDominates(aBlock, bBlock);
}