llvm/bolt/BinaryFunction.cpp
Rafael Auler 6c851dc2e3 Attempts to fix CFI state after reordering
Summary:
This patch introduces logic to check how the CFI instructions define a
table to help during stack unwinding at exception run time and attempts to fix
any problem in this table that may have been introduced by reordering the basic
blocks. If it fails to fix this problem, the function is marked as not simple
and not eligible for rewriting.

(cherry picked from FBD2633696)
2015-11-08 12:23:54 -08:00

1331 lines
46 KiB
C++

//===--- BinaryFunction.cpp - Interface for machine-level function --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "DataReader.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <limits>
#include <queue>
#include <string>
#undef DEBUG_TYPE
#define DEBUG_TYPE "flo"
namespace llvm {
namespace flo {
BinaryBasicBlock *
BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
if (Offset > Size)
return nullptr;
if (BasicBlocks.empty())
return nullptr;
auto I = std::upper_bound(BasicBlocks.begin(),
BasicBlocks.end(),
BinaryBasicBlock(Offset));
assert(I != BasicBlocks.begin() && "first basic block not at offset 0");
return &(*--I);
}
unsigned BinaryFunction::eraseDeadBBs(
std::map<BinaryBasicBlock *, bool> &ToPreserve) {
BasicBlockOrderType NewLayout;
unsigned Count = 0;
for (auto I = BasicBlocksLayout.begin(), E = BasicBlocksLayout.end(); I != E;
++I) {
if (ToPreserve[*I])
NewLayout.push_back(*I);
else
++Count;
}
BasicBlocksLayout = std::move(NewLayout);
return Count;
}
void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
bool PrintInstructions) const {
StringRef SectionName;
Section.getName(SectionName);
OS << "Binary Function \"" << getName() << "\" " << Annotation << " {"
<< "\n State : " << CurrentState
<< "\n Address : 0x" << Twine::utohexstr(Address)
<< "\n Size : 0x" << Twine::utohexstr(Size)
<< "\n MaxSize : 0x" << Twine::utohexstr(MaxSize)
<< "\n Offset : 0x" << Twine::utohexstr(FileOffset)
<< "\n Section : " << SectionName
<< "\n Orc Section : " << getCodeSectionName()
<< "\n IsSimple : " << IsSimple
<< "\n BB Count : " << BasicBlocksLayout.size();
if (FrameInstructions.size()) {
OS << "\n CFI Instrs : " << FrameInstructions.size();
}
if (BasicBlocksLayout.size()) {
OS << "\n BB Layout : ";
auto Sep = "";
for (auto BB : BasicBlocksLayout) {
OS << Sep << BB->getName();
Sep = ", ";
}
}
if (ImageAddress)
OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress);
if (ExecutionCount != COUNT_NO_PROFILE)
OS << "\n Exec Count : " << ExecutionCount;
OS << "\n}\n";
if (!PrintInstructions || !BC.InstPrinter)
return;
// Offset of the instruction in function.
uint64_t Offset{0};
auto printCFI = [&OS] (uint32_t Operation) {
switch(Operation) {
case MCCFIInstruction::OpSameValue: OS << "OpSameValue"; break;
case MCCFIInstruction::OpRememberState: OS << "OpRememberState"; break;
case MCCFIInstruction::OpRestoreState: OS << "OpRestoreState"; break;
case MCCFIInstruction::OpOffset: OS << "OpOffset"; break;
case MCCFIInstruction::OpDefCfaRegister: OS << "OpDefCfaRegister"; break;
case MCCFIInstruction::OpDefCfaOffset: OS << "OpDefCfaOffset"; break;
case MCCFIInstruction::OpDefCfa: OS << "OpDefCfa"; break;
case MCCFIInstruction::OpRelOffset: OS << "OpRelOffset"; break;
case MCCFIInstruction::OpAdjustCfaOffset: OS << "OfAdjustCfaOffset"; break;
case MCCFIInstruction::OpEscape: OS << "OpEscape"; break;
case MCCFIInstruction::OpRestore: OS << "OpRestore"; break;
case MCCFIInstruction::OpUndefined: OS << "OpUndefined"; break;
case MCCFIInstruction::OpRegister: OS << "OpRegister"; break;
case MCCFIInstruction::OpWindowSave: OS << "OpWindowSave"; break;
}
};
auto printInstruction = [&](const MCInst &Instruction) {
if (BC.MIA->isEHLabel(Instruction)) {
OS << " EH_LABEL: "
<< cast<MCSymbolRefExpr>(Instruction.getOperand(0).getExpr())->
getSymbol()
<< '\n';
return;
}
OS << format(" %08" PRIx64 ": ", Offset);
if (BC.MIA->isCFI(Instruction)) {
uint32_t Offset = Instruction.getOperand(0).getImm();
OS << "\t!CFI\t$" << Offset << "\t; ";
assert(Offset < FrameInstructions.size() && "Invalid CFI offset");
printCFI(FrameInstructions[Offset].getOperation());
OS << "\n";
return;
}
BC.InstPrinter->printInst(&Instruction, OS, "", *BC.STI);
if (BC.MIA->isCall(Instruction)) {
if (BC.MIA->isTailCall(Instruction))
OS << " # TAILCALL ";
if (Instruction.getNumOperands() > 1) {
OS << " # handler: ";
if (Instruction.getOperand(1).isExpr())
OS << cast<MCSymbolRefExpr>(Instruction.getOperand(1).getExpr())->
getSymbol();
else
OS << '0';
OS << "; action: " << Instruction.getOperand(2).getImm();
}
}
OS << "\n";
// In case we need MCInst printer:
// Instr.dump_pretty(OS, InstructionPrinter.get());
};
if (BasicBlocks.empty() && !Instructions.empty()) {
// Print before CFG was built.
for (const auto &II : Instructions) {
auto Offset = II.first;
// Print label if exists at this offset.
auto LI = Labels.find(Offset);
if (LI != Labels.end())
OS << LI->second->getName() << ":\n";
printInstruction(II.second);
}
}
for (auto BB : BasicBlocksLayout) {
OS << BB->getName() << " ("
<< BB->Instructions.size() << " instructions, align : "
<< BB->getAlignment() << ")\n";
if (LandingPads.find(BB->getLabel()) != LandingPads.end()) {
OS << " Landing Pad\n";
}
uint64_t BBExecCount = BB->getExecutionCount();
if (BBExecCount != BinaryBasicBlock::COUNT_NO_PROFILE) {
OS << " Exec Count : " << BBExecCount << "\n";
}
if (!BB->Predecessors.empty()) {
OS << " Predecessors: ";
auto Sep = "";
for (auto Pred : BB->Predecessors) {
OS << Sep << Pred->getName();
Sep = ", ";
}
OS << '\n';
}
Offset = RoundUpToAlignment(Offset, BB->getAlignment());
for (auto &Instr : *BB) {
printInstruction(Instr);
// Calculate the size of the instruction.
// Note: this is imprecise since happening prior to relaxation.
SmallString<256> Code;
SmallVector<MCFixup, 4> Fixups;
raw_svector_ostream VecOS(Code);
BC.MCE->encodeInstruction(Instr, VecOS, Fixups, *BC.STI);
Offset += Code.size();
}
if (!BB->Successors.empty()) {
OS << " Successors: ";
auto BI = BB->BranchInfo.begin();
auto Sep = "";
for (auto Succ : BB->Successors) {
assert(BI != BB->BranchInfo.end() && "missing BranchInfo entry");
OS << Sep << Succ->getName();
if (ExecutionCount != COUNT_NO_PROFILE &&
BI->MispredictedCount != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE) {
OS << " (mispreds: " << BI->MispredictedCount
<< ", count: " << BI->Count << ")";
} else if (ExecutionCount != COUNT_NO_PROFILE &&
BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE) {
OS << " (inferred count: " << BI->Count << ")";
}
Sep = ", ";
++BI;
}
OS << '\n';
}
OS << '\n';
}
// Dump new exception ranges for the function.
if (!CallSites.empty()) {
OS << "EH table:\n";
for (auto &CSI : CallSites) {
OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
if (CSI.LP)
OS << *CSI.LP;
else
OS << "0";
OS << ", action : " << CSI.Action << '\n';
}
OS << '\n';
}
OS << "DWARF CFI Instructions:\n";
if (OffsetToCFI.size()) {
// Pre-buildCFG information
for (auto &Elmt : OffsetToCFI) {
OS << format(" %08x:\t", Elmt.first);
assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
printCFI(FrameInstructions[Elmt.second].getOperation());
OS << "\n";
}
} else {
// Post-buildCFG information
for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
const MCCFIInstruction &CFI = FrameInstructions[I];
OS << format(" %d:\t", I);
printCFI(CFI.getOperation());
OS << "\n";
}
}
if (FrameInstructions.empty())
OS << " <empty>\n";
OS << "End of Function \"" << getName() << "\"\n\n";
}
bool BinaryFunction::disassemble(ArrayRef<uint8_t> FunctionData) {
assert(FunctionData.size() == getSize() &&
"function size does not match raw data size");
auto &Ctx = BC.Ctx;
auto &MIA = BC.MIA;
// Insert a label at the beginning of the function. This will be our first
// basic block.
Labels[0] = Ctx->createTempSymbol("BB0", false);
bool IsSimple = true;
for (uint64_t Offset = 0; IsSimple && (Offset < getSize()); ) {
MCInst Instruction;
uint64_t Size;
if (!BC.DisAsm->getInstruction(Instruction,
Size,
FunctionData.slice(Offset),
getAddress() + Offset,
nulls(),
nulls())) {
// Ignore this function. Skip to the next one.
IsSimple = false;
break;
}
if (MIA->isUnsupported(Instruction)) {
DEBUG(dbgs() << "FLO: unsupported instruction seen. Skipping function "
<< getName() << ".\n");
IsSimple = false;
break;
}
if (MIA->isIndirectBranch(Instruction)) {
DEBUG(dbgs() << "FLO: indirect branch seen. Skipping function "
<< getName() << ".\n");
IsSimple = false;
break;
}
uint64_t AbsoluteInstrAddr = getAddress() + Offset;
if (MIA->isBranch(Instruction) || MIA->isCall(Instruction)) {
uint64_t InstructionTarget = 0;
if (MIA->evaluateBranch(Instruction,
AbsoluteInstrAddr,
Size,
InstructionTarget)) {
// Check if the target is within the same function. Otherwise it's
// a call, possibly a tail call.
//
// If the target *is* the function address it could be either a branch
// or a recursive call.
bool IsCall = MIA->isCall(Instruction);
bool IsCondBranch = MIA->isConditionalBranch(Instruction);
MCSymbol *TargetSymbol{nullptr};
uint64_t TargetOffset{0};
if (IsCall && containsAddress(InstructionTarget)) {
if (InstructionTarget == getAddress()) {
// Recursive call.
TargetSymbol = Ctx->getOrCreateSymbol(getName());
} else {
// Possibly an old-style PIC code
DEBUG(dbgs() << "FLO: internal call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr)
<< " in function " << getName() << "\n");
IsSimple = false;
break;
}
}
if (!TargetSymbol) {
// Create either local label or external symbol.
if (containsAddress(InstructionTarget)) {
// Check if there's already a registered label.
TargetOffset = InstructionTarget - getAddress();
auto LI = Labels.find(TargetOffset);
if (LI == Labels.end()) {
TargetSymbol = Ctx->createTempSymbol();
Labels[TargetOffset] = TargetSymbol;
} else {
TargetSymbol = LI->second;
}
} else {
if (!IsCall && Size == 2) {
errs() << "FLO-WARNING: relaxed tail call detected at 0x"
<< Twine::utohexstr(AbsoluteInstrAddr)
<< ". Code size will be increased.\n";
}
// This is a call regardless of the opcode.
// Assign proper opcode for tail calls, so that they could be
// treated as calls.
if (!IsCall) {
MIA->convertJmpToTailCall(Instruction);
IsCall = true;
}
TargetSymbol = BC.getOrCreateGlobalSymbol(InstructionTarget,
"FUNCat");
}
}
Instruction.clear();
Instruction.addOperand(
MCOperand::createExpr(
MCSymbolRefExpr::create(TargetSymbol,
MCSymbolRefExpr::VK_None,
*Ctx)));
if (!IsCall) {
// Add local branch info.
LocalBranches.push_back({Offset, TargetOffset});
}
if (IsCondBranch) {
// Add fallthrough branch info.
FTBranches.push_back({Offset, Offset + Size});
}
} else {
// Indirect call
DEBUG(dbgs() << "FLO: indirect call detected (not yet supported)\n");
IsSimple = false;
break;
}
} else {
if (MIA->hasRIPOperand(Instruction)) {
uint64_t TargetAddress{0};
MCSymbol *TargetSymbol{nullptr};
if (!MIA->evaluateRIPOperand(Instruction, AbsoluteInstrAddr,
Size, TargetAddress)) {
DEBUG(
dbgs() << "FLO: rip-relative operand could not be evaluated:\n";
BC.InstPrinter->printInst(&Instruction, dbgs(), "", *BC.STI);
dbgs() << '\n';
Instruction.dump_pretty(dbgs(), BC.InstPrinter.get());
dbgs() << '\n';
);
IsSimple = false;
break;
}
// FIXME: check that the address is in data, not in code.
TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "DATAat");
MIA->replaceRIPOperandDisp(
Instruction,
MCOperand::createExpr(
MCSymbolRefExpr::create(TargetSymbol,
MCSymbolRefExpr::VK_None,
*Ctx)));
}
}
addInstruction(Offset, std::move(Instruction));
Offset += Size;
}
setSimple(IsSimple);
// TODO: clear memory if not simple function?
// Update state.
updateState(State::Disassembled);
return true;
}
bool BinaryFunction::buildCFG() {
auto &MIA = BC.MIA;
auto BranchDataOrErr = BC.DR.getFuncBranchData(getName());
if (std::error_code EC = BranchDataOrErr.getError()) {
DEBUG(dbgs() << "no branch data found for \"" << getName() << "\"\n");
} else {
ExecutionCount = BC.DR.countBranchesTo(getName());
}
if (!isSimple())
return false;
if (!(CurrentState == State::Disassembled))
return false;
assert(BasicBlocks.empty() && "basic block list should be empty");
assert((Labels.find(0) != Labels.end()) &&
"first instruction should always have a label");
// Create basic blocks in the original layout order:
//
// * Every instruction with associated label marks
// the beginning of a basic block.
// * Conditional instruction marks the end of a basic block,
// except when the following instruction is an
// unconditional branch, and the unconditional branch is not
// a destination of another branch. In the latter case, the
// basic block will consist of a single unconditional branch
// (missed optimization opportunity?).
//
// Created basic blocks are sorted in layout order since they are
// created in the same order as instructions, and instructions are
// sorted by offsets.
BinaryBasicBlock *InsertBB{nullptr};
BinaryBasicBlock *PrevBB{nullptr};
bool IsLastInstrNop = false;
MCInst *PrevInstr{nullptr};
auto addCFIPlaceholders =
[this](uint64_t CFIOffset, BinaryBasicBlock *InsertBB) {
for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
FE = OffsetToCFI.upper_bound(CFIOffset);
FI != FE; ++FI) {
addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
}
};
for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
auto &InstrInfo = *I;
auto LI = Labels.find(InstrInfo.first);
if (LI != Labels.end()) {
// Always create new BB at branch destination.
PrevBB = InsertBB;
InsertBB = addBasicBlock(LI->first, LI->second,
/* DeriveAlignment = */ IsLastInstrNop);
}
if (!InsertBB) {
// It must be a fallthrough or unreachable code. Create a new block unless
// we see an unconditional branch following a conditional one.
assert(PrevBB && "no previous basic block for a fall through");
assert(PrevInstr && "no previous instruction for a fall through");
if (MIA->isUnconditionalBranch(InstrInfo.second) &&
!MIA->isUnconditionalBranch(*PrevInstr)) {
// Temporarily restore inserter basic block.
InsertBB = PrevBB;
} else {
InsertBB = addBasicBlock(InstrInfo.first,
BC.Ctx->createTempSymbol("FT", true),
/* DeriveAlignment = */ IsLastInstrNop);
}
}
if (InstrInfo.first == 0) {
// Add associated CFI pseudos in the first offset (0)
addCFIPlaceholders(0, InsertBB);
}
// Ignore nops. We use nops to derive alignment of the next basic block.
// It will not always work, as some blocks are naturally aligned, but
// it's just part of heuristic for block alignment.
if (MIA->isNoop(InstrInfo.second)) {
IsLastInstrNop = true;
continue;
}
IsLastInstrNop = false;
InsertBB->addInstruction(InstrInfo.second);
PrevInstr = &InstrInfo.second;
// Add associated CFI instrs. We always add the CFI instruction that is
// located immediately after this instruction, since the next CFI
// instruction reflects the change in state caused by this instruction.
auto NextInstr = I;
++NextInstr;
uint64_t CFIOffset;
if (NextInstr != E)
CFIOffset = NextInstr->first;
else
CFIOffset = getSize();
addCFIPlaceholders(CFIOffset, InsertBB);
// How well do we detect tail calls here?
if (MIA->isTerminator(InstrInfo.second)) {
PrevBB = InsertBB;
InsertBB = nullptr;
}
}
// Set the basic block layout to the original order
for (auto &BB : BasicBlocks) {
BasicBlocksLayout.emplace_back(&BB);
}
// Intermediate dump.
DEBUG(print(dbgs(), "after creating basic blocks"));
// TODO: handle properly calls to no-return functions,
// e.g. exit(3), etc. Otherwise we'll see a false fall-through
// blocks.
for (auto &Branch : LocalBranches) {
DEBUG(dbgs() << "registering branch [0x" << Twine::utohexstr(Branch.first)
<< "] -> [0x" << Twine::utohexstr(Branch.second) << "]\n");
BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
assert(FromBB && "cannot find BB containing FROM branch");
BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
assert(ToBB && "cannot find BB containing TO branch");
if (BranchDataOrErr.getError()) {
FromBB->addSuccessor(ToBB);
} else {
const FuncBranchData &BranchData = BranchDataOrErr.get();
auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second);
if (BranchInfoOrErr.getError()) {
FromBB->addSuccessor(ToBB);
} else {
const BranchInfo &BInfo = BranchInfoOrErr.get();
FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds);
}
}
}
for (auto &Branch : FTBranches) {
DEBUG(dbgs() << "registering fallthrough [0x"
<< Twine::utohexstr(Branch.first) << "] -> [0x"
<< Twine::utohexstr(Branch.second) << "]\n");
BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
assert(FromBB && "cannot find BB containing FROM branch");
BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
// We have a fall-through that does not point to another BB, ignore it as
// it may happen in cases where we have a BB finished by two branches.
if (ToBB == nullptr)
continue;
// Does not add a successor if we can't find profile data, leave it to the
// inference pass to guess its frequency
if (!BranchDataOrErr.getError()) {
const FuncBranchData &BranchData = BranchDataOrErr.get();
auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second);
if (!BranchInfoOrErr.getError()) {
const BranchInfo &BInfo = BranchInfoOrErr.get();
FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds);
}
}
}
// Add fall-through branches (except for non-taken conditional branches with
// profile data, which were already accounted for in LocalBranches).
PrevBB = nullptr;
bool IsPrevFT = false; // Is previous block a fall-through.
for (auto &BB : BasicBlocks) {
if (IsPrevFT) {
PrevBB->addSuccessor(&BB, BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE,
BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE);
}
if (BB.empty()) {
IsPrevFT = true;
PrevBB = &BB;
continue;
}
auto LastInstIter = --BB.end();
while (MIA->isCFI(*LastInstIter) && LastInstIter != BB.begin())
--LastInstIter;
if (BB.succ_size() == 0) {
IsPrevFT = MIA->isTerminator(*LastInstIter) ? false : true;
} else if (BB.succ_size() == 1) {
IsPrevFT = MIA->isConditionalBranch(*LastInstIter) ? true : false;
} else {
// Ends with 2 branches, with an indirect jump or it is a conditional
// branch whose frequency has been inferred from LBR
IsPrevFT = false;
}
PrevBB = &BB;
}
if (!IsPrevFT) {
// Possibly a call that does not return.
DEBUG(dbgs() << "last block was marked as a fall-through\n");
}
// Infer frequency for non-taken branches
if (ExecutionCount != COUNT_NO_PROFILE && !BranchDataOrErr.getError()) {
inferFallThroughCounts();
}
// Update CFI information for each BB
annotateCFIState();
// Clean-up memory taken by instructions and labels.
clearInstructions();
clearCFIOffsets();
clearLabels();
clearLocalBranches();
clearFTBranches();
// Update the state.
CurrentState = State::CFG;
return true;
}
void BinaryFunction::inferFallThroughCounts() {
assert(!BasicBlocks.empty() && "basic block list should not be empty");
// Compute preliminary execution time for each basic block
for (auto &CurBB : BasicBlocks) {
if (&CurBB == &*BasicBlocks.begin()) {
CurBB.ExecutionCount = ExecutionCount;
continue;
}
CurBB.ExecutionCount = 0;
}
for (auto &CurBB : BasicBlocks) {
auto SuccCount = CurBB.BranchInfo.begin();
for (auto Succ : CurBB.successors()) {
// Do not update execution count of the entry block (when we have tail
// calls). We already accounted for those when computing the func count.
if (Succ == &*BasicBlocks.begin())
continue;
if (SuccCount->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Succ->ExecutionCount += SuccCount->Count;
++SuccCount;
}
}
// Work on a basic block at a time, propagating frequency information forwards
// It is important to walk in the layour order
for (auto &CurBB : BasicBlocks) {
uint64_t BBExecCount = CurBB.getExecutionCount();
// Propagate this information to successors, filling in fall-through edges
// with frequency information
if (CurBB.succ_size() == 0)
continue;
// Calculate frequency of outgoing branches from this node according to
// LBR data
uint64_t ReportedBranches = 0;
for (auto &SuccCount : CurBB.BranchInfo) {
if (SuccCount.Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
ReportedBranches += SuccCount.Count;
}
// Infer the frequency of the fall-through edge, representing not taking the
// branch
uint64_t Inferred = 0;
if (BBExecCount > ReportedBranches)
Inferred = BBExecCount - ReportedBranches;
DEBUG({
if (BBExecCount < ReportedBranches)
dbgs()
<< "FLO-WARNING: Fall-through inference is slightly inconsistent. "
"exec frequency is less than the outgoing edges frequency ("
<< BBExecCount << " < " << ReportedBranches
<< ") for BB at offset 0x"
<< Twine::utohexstr(getAddress() + CurBB.getOffset()) << '\n';
});
// Put this information into the fall-through edge
if (CurBB.succ_size() == 0)
continue;
// If there is a FT, the last successor will be it.
auto &SuccCount = CurBB.BranchInfo.back();
auto &Succ = CurBB.Successors.back();
if (SuccCount.Count == BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE) {
SuccCount.Count = Inferred;
Succ->ExecutionCount += Inferred;
}
} // end for (CurBB : BasicBlocks)
return;
}
void BinaryFunction::annotateCFIState() {
assert(!BasicBlocks.empty() && "basic block list should not be empty");
uint32_t State = 0;
uint32_t HighestState = 0;
std::stack<uint32_t> StateStack;
for (auto CI = BasicBlocks.begin(), CE = BasicBlocks.end(); CI != CE; ++CI) {
BinaryBasicBlock &CurBB = *CI;
// Annotate this BB entry
BBCFIState.emplace_back(State);
// Advance state
for (const auto &Instr : CurBB) {
MCCFIInstruction *CFI = getCFIFor(Instr);
if (CFI == nullptr)
continue;
++HighestState;
if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
StateStack.push(State);
continue;
}
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
assert(!StateStack.empty() && "Corrupt CFI stack");
State = StateStack.top();
StateStack.pop();
continue;
}
State = HighestState;
}
}
// Store the state after the last BB
BBCFIState.emplace_back(State);
assert(StateStack.empty() && "Corrupt CFI stack");
}
bool BinaryFunction::fixCFIState() {
auto Sep = "";
DEBUG(dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
DEBUG(dbgs() << "This is the list of CFI states for each BB of " << getName()
<< ": ");
auto replayCFIInstrs =
[this](uint32_t FromState, uint32_t ToState, BinaryBasicBlock *InBB,
BinaryBasicBlock::const_iterator InsertIt) -> bool {
if (FromState == ToState)
return true;
assert(FromState < ToState);
for (uint32_t CurState = FromState; CurState < ToState; ++CurState) {
MCCFIInstruction *Instr = &FrameInstructions[CurState];
if (Instr->getOperation() == MCCFIInstruction::OpRememberState ||
Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
// TODO: If in replaying the CFI instructions to reach this state we
// have state stack instructions, we could still work out the logic
// to extract only the necessary instructions to reach this state
// without using the state stack. Not sure if it is worth the effort
// because this happens rarely.
errs() << "FLO-WARNING: CFI rewriter expected state " << ToState
<< " but found " << FromState << " instead (@ " << getName()
<< "). Giving up this function.\n";
return false;
}
InsertIt =
addCFIPseudo(InBB, InsertIt, Instr - &*FrameInstructions.begin());
++InsertIt;
}
return true;
};
uint32_t State = 0;
BinaryBasicBlock *EntryBB = *BasicBlocksLayout.begin();
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
uint32_t BBIndex = BB - &*BasicBlocks.begin();
// Check if state is what this BB expect it to be at its entry point
if (BBCFIState[BBIndex] != State) {
// Need to recover the correct state
if (BBCFIState[BBIndex] < State) {
// In this case, State is currently higher than what this BB expect it
// to be. To solve this, we need to insert a CFI instruction to remember
// the old state at function entry, then another CFI instruction to
// restore it at the entry of this BB and replay CFI instructions to
// reach the desired state.
uint32_t OldState = BBCFIState[BBIndex];
// Remember state at function entry point (our reference state).
BinaryBasicBlock::const_iterator InsertIt = EntryBB->begin();
while (InsertIt != EntryBB->end() && BC.MIA->isCFI(*InsertIt))
++InsertIt;
addCFIPseudo(EntryBB, InsertIt, FrameInstructions.size());
FrameInstructions.emplace_back(
MCCFIInstruction::createRememberState(nullptr));
// Restore state
InsertIt = addCFIPseudo(BB, BB->begin(), FrameInstructions.size());
++InsertIt;
FrameInstructions.emplace_back(
MCCFIInstruction::createRestoreState(nullptr));
if (!replayCFIInstrs(0, OldState, BB, InsertIt))
return false;
// Check if we messed up the stack in this process
int StackOffset = 0;
for (BinaryBasicBlock *CurBB : BasicBlocksLayout) {
if (CurBB == BB)
break;
for (auto &Instr : *CurBB) {
if (MCCFIInstruction *CFI = getCFIFor(Instr)) {
if (CFI->getOperation() == MCCFIInstruction::OpRememberState)
++StackOffset;
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState)
--StackOffset;
}
}
}
auto Pos = BB->begin();
while (MCCFIInstruction *CFI = getCFIFor(*Pos++)) {
if (CFI->getOperation() == MCCFIInstruction::OpRememberState)
++StackOffset;
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState)
--StackOffset;
}
if (StackOffset != 0) {
errs() << " FLO-WARNING: not possible to remember/recover state"
<< "without corrupting CFI state stack in function "
<< getName() << "\n";
return false;
}
} else {
// If BBCFIState[BBIndex] > State, it means we are behind in the
// state. Just emit all instructions to reach this state at the
// beginning of this BB. If this sequence of instructions involve
// remember state or restore state, bail out.
if (!replayCFIInstrs(State, BBCFIState[BBIndex], BB, BB->begin()))
return false;
}
}
State = BBCFIState[BBIndex + 1];
DEBUG(dbgs() << Sep << State);
DEBUG(Sep = ", ");
}
DEBUG(dbgs() << "\n");
return true;
}
void BinaryFunction::optimizeLayout(HeuristicPriority Priority) {
// Bail if no profiling information or if empty
if (getExecutionCount() == BinaryFunction::COUNT_NO_PROFILE ||
BasicBlocksLayout.empty()) {
return;
}
// Work on optimal solution if problem is small enough
if (BasicBlocksLayout.size() <= FUNC_SIZE_THRESHOLD)
return solveOptimalLayout();
DEBUG(dbgs() << "running block layout heuristics on " << getName() << "\n");
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
// maximize weight during a path traversing all BBs. In this way, we will
// convert the hottest branches into fall-throughs.
// Encode an edge between two basic blocks, source and destination
typedef std::pair<BinaryBasicBlock *, BinaryBasicBlock *> EdgeTy;
std::map<EdgeTy, uint64_t> Weight;
// Define a comparison function to establish SWO between edges
auto Comp = [&Weight](EdgeTy A, EdgeTy B) { return Weight[A] < Weight[B]; };
std::priority_queue<EdgeTy, std::vector<EdgeTy>, decltype(Comp)> Queue(Comp);
typedef std::vector<BinaryBasicBlock *> ClusterTy;
typedef std::map<BinaryBasicBlock *, int> BBToClusterMapTy;
std::vector<ClusterTy> Clusters;
BBToClusterMapTy BBToClusterMap;
// Encode relative weights between two clusters
std::vector<std::map<uint32_t, uint64_t>> ClusterEdges;
ClusterEdges.resize(BasicBlocksLayout.size());
for (auto BB : BasicBlocksLayout) {
// Create a cluster for this BB
uint32_t I = Clusters.size();
Clusters.emplace_back();
auto &Cluster = Clusters.back();
Cluster.push_back(BB);
BBToClusterMap[BB] = I;
// Populate priority queue with edges
auto BI = BB->BranchInfo.begin();
for (auto &I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[std::make_pair(BB, I)] = BI->Count;
Queue.push(std::make_pair(BB, I));
++BI;
}
}
// Grow clusters in a greedy fashion
while (!Queue.empty()) {
auto elmt = Queue.top();
Queue.pop();
BinaryBasicBlock *BBSrc = elmt.first;
BinaryBasicBlock *BBDst = elmt.second;
// Case 1: BBSrc and BBDst are the same. Ignore this edge
if (BBSrc == BBDst || BBDst == *BasicBlocksLayout.begin())
continue;
int I = BBToClusterMap[BBSrc];
int J = BBToClusterMap[BBDst];
// Case 2: If they are already allocated at the same cluster, just increase
// the weight of this cluster
if (I == J) {
ClusterEdges[I][I] += Weight[elmt];
continue;
}
auto &ClusterA = Clusters[I];
auto &ClusterB = Clusters[J];
if (ClusterA.back() == BBSrc && ClusterB.front() == BBDst) {
// Case 3: BBSrc is at the end of a cluster and BBDst is at the start,
// allowing us to merge two clusters
for (auto BB : ClusterB)
BBToClusterMap[BB] = I;
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
ClusterB.clear();
// Iterate through all inter-cluster edges and transfer edges targeting
// cluster B to cluster A.
// It is bad to have to iterate though all edges when we could have a list
// of predecessors for cluster B. However, it's not clear if it is worth
// the added code complexity to create a data structure for clusters that
// maintains a list of predecessors. Maybe change this if it becomes a
// deal breaker.
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
ClusterEdges[K][I] += ClusterEdges[K][J];
} else {
// Case 4: Both BBSrc and BBDst are allocated in positions we cannot
// merge them. Annotate the weight of this edge in the weight between
// clusters to help us decide ordering between these clusters.
ClusterEdges[I][J] += Weight[elmt];
}
}
DEBUG(for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
dbgs() << "Cluster number " << I << ": ";
auto Sep = "";
for (auto BB : Clusters[I]) {
dbgs() << Sep << BB->getName();
Sep = ", ";
}
dbgs() << "\n";
});
std::vector<uint32_t> Order; // Cluster layout order
// Here we have 3 conflicting goals as to how to layout clusters. If we want
// to minimize jump offsets, we should put clusters with heavy inter-cluster
// dependence as close as possible. If we want to maximize the probability
// that all inter-cluster edges are predicted as not-taken, we should enforce
// a topological order to make targets appear after sources, creating forward
// branches. If we want to separate hot from cold blocks to maximize the
// probability that unfrequently executed code doesn't pollute the cache, we
// should put clusters in descending order of hotness.
std::vector<double> AvgFreq;
AvgFreq.resize(Clusters.size(), 0.0);
for (uint32_t I = 1, E = Clusters.size(); I < E; ++I) {
double Freq = 0.0;
for (auto BB : Clusters[I]) {
if (!BB->empty() && BB->size() != BB->getNumPseudos())
Freq += BB->getExecutionCount() / (BB->size() - BB->getNumPseudos());
}
AvgFreq[I] = Freq;
}
switch(Priority) {
case HP_NONE: {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
Order.push_back(I);
break;
}
case HP_BRANCH_PREDICTOR: {
// Do a topological sort for clusters, prioritizing frequently-executed BBs
// during the traversal.
std::stack<uint32_t> Stack;
std::vector<uint32_t> Status;
std::vector<uint32_t> Parent;
Status.resize(Clusters.size(), 0);
Parent.resize(Clusters.size(), 0);
constexpr uint32_t STACKED = 1;
constexpr uint32_t VISITED = 2;
Status[0] = STACKED;
Stack.push(0);
while (!Stack.empty()) {
uint32_t I = Stack.top();
if (!(Status[I] & VISITED)) {
Status[I] |= VISITED;
// Order successors by weight
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
return ClusterEdges[I][A] > ClusterEdges[I][B];
};
std::priority_queue<uint32_t, std::vector<uint32_t>,
decltype(ClusterComp)> SuccQueue(ClusterComp);
for (auto &Target: ClusterEdges[I]) {
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
!Clusters[Target.first].empty()) {
Parent[Target.first] = I;
Status[Target.first] = STACKED;
SuccQueue.push(Target.first);
}
}
while (!SuccQueue.empty()) {
Stack.push(SuccQueue.top());
SuccQueue.pop();
}
continue;
}
// Already visited this node
Stack.pop();
Order.push_back(I);
}
std::reverse(Order.begin(), Order.end());
// Put unreachable clusters at the end
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!(Status[I] & VISITED) && !Clusters[I].empty())
Order.push_back(I);
// Sort nodes with equal precedence
auto Beg = Order.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, Order.end(),
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
uint32_t P = Parent[A];
while (Parent[P] != 0) {
if (Parent[P] == B)
return false;
P = Parent[P];
}
P = Parent[B];
while (Parent[P] != 0) {
if (Parent[P] == A)
return true;
P = Parent[P];
}
return AvgFreq[A] > AvgFreq[B];
});
break;
}
case HP_CACHE_UTILIZATION: {
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
Order.push_back(I);
auto Beg = Order.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, Order.end(), [&AvgFreq](uint32_t A, uint32_t B) {
return AvgFreq[A] > AvgFreq[B];
});
break;
}
}
BasicBlocksLayout.clear();
for (auto I : Order) {
auto &Cluster = Clusters[I];
BasicBlocksLayout.insert(BasicBlocksLayout.end(), Cluster.begin(),
Cluster.end());
}
fixBranches();
}
void BinaryFunction::solveOptimalLayout() {
std::vector<std::vector<uint64_t>> Weight;
std::map<BinaryBasicBlock *, int> BBToIndex;
std::vector<BinaryBasicBlock *> IndexToBB;
DEBUG(dbgs() << "finding optimal block layout for " << getName() << "\n");
unsigned N = BasicBlocksLayout.size();
// Populating weight map and index map
for (auto BB : BasicBlocksLayout) {
BBToIndex[BB] = IndexToBB.size();
IndexToBB.push_back(BB);
}
Weight.resize(N);
for (auto BB : BasicBlocksLayout) {
auto BI = BB->BranchInfo.begin();
Weight[BBToIndex[BB]].resize(N);
for (auto I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[BBToIndex[BB]][BBToIndex[I]] = BI->Count;
++BI;
}
}
std::vector<std::vector<int64_t>> DP;
DP.resize(1 << N);
for (auto &Elmt : DP) {
Elmt.resize(N, -1);
}
// Start with the entry basic block being allocated with cost zero
DP[1][0] = 0;
// Walk through TSP solutions using a bitmask to represent state (current set
// of BBs in the layout)
unsigned BestSet = 1;
unsigned BestLast = 0;
int64_t BestWeight = 0;
for (unsigned Set = 1; Set < (1U << N); ++Set) {
// Traverse each possibility of Last BB visited in this layout
for (unsigned Last = 0; Last < N; ++Last) {
// Case 1: There is no possible layout with this BB as Last
if (DP[Set][Last] == -1)
continue;
// Case 2: There is a layout with this Set and this Last, and we try
// to expand this set with New
for (unsigned New = 1; New < N; ++New) {
// Case 2a: BB "New" is already in this Set
if ((Set & (1 << New)) != 0)
continue;
// Case 2b: BB "New" is not in this set and we add it to this Set and
// record total weight of this layout with "New" as the last BB.
unsigned NewSet = (Set | (1 << New));
if (DP[NewSet][New] == -1)
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
DP[NewSet][New] = std::max(DP[NewSet][New],
DP[Set][Last] + (int64_t)Weight[Last][New]);
if (DP[NewSet][New] > BestWeight) {
BestWeight = DP[NewSet][New];
BestSet = NewSet;
BestLast = New;
}
}
}
}
std::vector<BinaryBasicBlock *> PastLayout = BasicBlocksLayout;
// Define final function layout based on layout that maximizes weight
BasicBlocksLayout.clear();
unsigned Last = BestLast;
unsigned Set = BestSet;
std::vector<bool> Visited;
Visited.resize(N);
Visited[Last] = true;
BasicBlocksLayout.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
while (Set != 0) {
int64_t Best = -1;
for (unsigned I = 0; I < N; ++I) {
if (DP[Set][I] == -1)
continue;
if (DP[Set][I] > Best) {
Last = I;
Best = DP[Set][I];
}
}
Visited[Last] = true;
BasicBlocksLayout.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
}
std::reverse(BasicBlocksLayout.begin(), BasicBlocksLayout.end());
// Finalize layout with BBs that weren't assigned to the layout
for (auto BB : PastLayout) {
if (Visited[BBToIndex[BB]] == false)
BasicBlocksLayout.push_back(BB);
}
fixBranches();
}
const BinaryBasicBlock *
BinaryFunction::getOriginalLayoutSuccessor(const BinaryBasicBlock *BB) const {
auto I = std::upper_bound(BasicBlocks.begin(), BasicBlocks.end(), *BB);
assert(I != BasicBlocks.begin() && "first basic block not at offset 0");
if (I == BasicBlocks.end())
return nullptr;
return &*I;
}
void BinaryFunction::fixBranches() {
auto &MIA = BC.MIA;
for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
BinaryBasicBlock *BB = BasicBlocksLayout[I];
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!MIA->analyzeBranch(BB->Instructions, TBB, FBB, CondBranch,
UncondBranch)) {
continue;
}
// Check if the original fall-through for this block has been moved
const MCSymbol *FT = nullptr;
if (I + 1 != BasicBlocksLayout.size())
FT = BasicBlocksLayout[I + 1]->getLabel();
const BinaryBasicBlock *OldFTBB = getOriginalLayoutSuccessor(BB);
const MCSymbol *OldFT = nullptr;
if (OldFTBB != nullptr)
OldFT = OldFTBB->getLabel();
// Case 1: There are no branches in this basic block and it just falls
// through
if (CondBranch == nullptr && UncondBranch == nullptr) {
// Case 1a: Last instruction, excluding pseudos, is a return, so it does
// *not* fall through to the next block.
if (!BB->empty()) {
auto LastInstIter = --BB->end();
while (BC.MII->get(LastInstIter->getOpcode()).isPseudo() &&
LastInstIter != BB->begin())
--LastInstIter;
if (MIA->isReturn(*LastInstIter))
continue;
}
// Case 1b: Layout has changed and the fallthrough is not the same. Need
// to add a new unconditional branch to jump to the old fallthrough.
if (FT != OldFT && OldFT != nullptr) {
MCInst NewInst;
if (!MIA->createUncondBranch(NewInst, OldFT, BC.Ctx.get()))
llvm_unreachable("Target does not support creating new branches");
BB->Instructions.emplace_back(std::move(NewInst));
}
// Case 1c: Layout hasn't changed, nothing to do.
continue;
}
// Case 2: There is a single jump, unconditional, in this basic block
if (CondBranch == nullptr) {
// Case 2a: It jumps to the new fall-through, so we can delete it
if (TBB == FT) {
BB->eraseInstruction(UncondBranch);
}
// Case 2b: If 2a doesn't happen, there is nothing we can do
continue;
}
// Case 3: There is a single jump, conditional, in this basic block
if (UncondBranch == nullptr) {
// Case 3a: If the taken branch goes to the next block in the new layout,
// invert this conditional branch logic so we can make this a fallthrough.
if (TBB == FT) {
assert(OldFT != nullptr && "malformed CFG");
if (!MIA->reverseBranchCondition(*CondBranch, OldFT, BC.Ctx.get()))
llvm_unreachable("Target does not support reversing branches");
continue;
}
// Case 3b: Need to add a new unconditional branch because layout
// has changed
if (FT != OldFT && OldFT != nullptr) {
MCInst NewInst;
if (!MIA->createUncondBranch(NewInst, OldFT, BC.Ctx.get()))
llvm_unreachable("Target does not support creating new branches");
BB->Instructions.emplace_back(std::move(NewInst));
continue;
}
// Case 3c: Old fall-through is the same as the new one, no need to change
continue;
}
// Case 4: There are two jumps in this basic block, one conditional followed
// by another unconditional.
// Case 4a: If the unconditional jump target is the new fall through,
// delete it.
if (FBB == FT) {
BB->eraseInstruction(UncondBranch);
continue;
}
// Case 4b: If the taken branch goes to the next block in the new layout,
// invert this conditional branch logic so we can make this a fallthrough.
// Now we don't need the unconditional jump anymore, so we also delete it.
if (TBB == FT) {
if (!MIA->reverseBranchCondition(*CondBranch, FBB, BC.Ctx.get()))
llvm_unreachable("Target does not support reversing branches");
BB->eraseInstruction(UncondBranch);
continue;
}
// Case 4c: Nothing interesting happening.
}
}
} // namespace flo
} // namespace llvm