llvm/mlir/lib/Pass/Pass.cpp
Mehdi Amini 6c05ca21b9 Remove the run method from OpPassManager and Pass and migrate it to OpToOpPassAdaptor
This makes OpPassManager more of a "container" of passes and not responsible to drive the execution.
As such we also make it constructible publicly, which will allow to build arbitrary pipeline decoupled from the execution. We'll make use of this facility to expose "dynamic pipeline" in the future.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86391
2020-08-27 04:57:29 +00:00

932 lines
34 KiB
C++

//===- Pass.cpp - Pass infrastructure implementation ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements common pass infrastructure.
//
//===----------------------------------------------------------------------===//
#include "mlir/Pass/Pass.h"
#include "PassDetail.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Support/FileUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/ToolOutputFile.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// Pass
//===----------------------------------------------------------------------===//
/// Out of line virtual method to ensure vtables and metadata are emitted to a
/// single .o file.
void Pass::anchor() {}
/// Attempt to initialize the options of this pass from the given string.
LogicalResult Pass::initializeOptions(StringRef options) {
return passOptions.parseFromString(options);
}
/// Copy the option values from 'other', which is another instance of this
/// pass.
void Pass::copyOptionValuesFrom(const Pass *other) {
passOptions.copyOptionValuesFrom(other->passOptions);
}
/// Prints out the pass in the textual representation of pipelines. If this is
/// an adaptor pass, print with the op_name(sub_pass,...) format.
void Pass::printAsTextualPipeline(raw_ostream &os) {
// Special case for adaptors to use the 'op_name(sub_passes)' format.
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(this)) {
llvm::interleaveComma(adaptor->getPassManagers(), os,
[&](OpPassManager &pm) {
os << pm.getOpName() << "(";
pm.printAsTextualPipeline(os);
os << ")";
});
return;
}
// Otherwise, print the pass argument followed by its options. If the pass
// doesn't have an argument, print the name of the pass to give some indicator
// of what pass was run.
StringRef argument = getArgument();
if (!argument.empty())
os << argument;
else
os << "unknown<" << getName() << ">";
passOptions.print(os);
}
//===----------------------------------------------------------------------===//
// Verifier Passes
//===----------------------------------------------------------------------===//
void VerifierPass::runOnOperation() {
if (failed(verify(getOperation())))
signalPassFailure();
markAllAnalysesPreserved();
}
//===----------------------------------------------------------------------===//
// OpPassManagerImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct OpPassManagerImpl {
OpPassManagerImpl(OperationName name, bool verifyPasses)
: name(name), verifyPasses(verifyPasses) {}
/// Merge the passes of this pass manager into the one provided.
void mergeInto(OpPassManagerImpl &rhs);
/// Nest a new operation pass manager for the given operation kind under this
/// pass manager.
OpPassManager &nest(const OperationName &nestedName);
OpPassManager &nest(StringRef nestedName) {
return nest(OperationName(nestedName, getContext()));
}
/// Add the given pass to this pass manager. If this pass has a concrete
/// operation type, it must be the same type as this pass manager.
void addPass(std::unique_ptr<Pass> pass);
/// Coalesce adjacent AdaptorPasses into one large adaptor. This runs
/// recursively through the pipeline graph.
void coalesceAdjacentAdaptorPasses();
/// Split all of AdaptorPasses such that each adaptor only contains one leaf
/// pass.
void splitAdaptorPasses();
/// Return an instance of the context.
MLIRContext *getContext() const {
return name.getAbstractOperation()->dialect.getContext();
}
/// The name of the operation that passes of this pass manager operate on.
OperationName name;
/// Flag that specifies if the IR should be verified after each pass has run.
bool verifyPasses : 1;
/// The set of passes to run as part of this pass manager.
std::vector<std::unique_ptr<Pass>> passes;
};
} // end namespace detail
} // end namespace mlir
void OpPassManagerImpl::mergeInto(OpPassManagerImpl &rhs) {
assert(name == rhs.name && "merging unrelated pass managers");
for (auto &pass : passes)
rhs.passes.push_back(std::move(pass));
passes.clear();
}
OpPassManager &OpPassManagerImpl::nest(const OperationName &nestedName) {
OpPassManager nested(nestedName, verifyPasses);
auto *adaptor = new OpToOpPassAdaptor(std::move(nested));
addPass(std::unique_ptr<Pass>(adaptor));
return adaptor->getPassManagers().front();
}
void OpPassManagerImpl::addPass(std::unique_ptr<Pass> pass) {
// If this pass runs on a different operation than this pass manager, then
// implicitly nest a pass manager for this operation.
auto passOpName = pass->getOpName();
if (passOpName && passOpName != name.getStringRef())
return nest(*passOpName).addPass(std::move(pass));
passes.emplace_back(std::move(pass));
if (verifyPasses)
passes.emplace_back(std::make_unique<VerifierPass>());
}
void OpPassManagerImpl::coalesceAdjacentAdaptorPasses() {
// Bail out early if there are no adaptor passes.
if (llvm::none_of(passes, [](std::unique_ptr<Pass> &pass) {
return isa<OpToOpPassAdaptor>(pass.get());
}))
return;
// Walk the pass list and merge adjacent adaptors.
OpToOpPassAdaptor *lastAdaptor = nullptr;
for (auto it = passes.begin(), e = passes.end(); it != e; ++it) {
// Check to see if this pass is an adaptor.
if (auto *currentAdaptor = dyn_cast<OpToOpPassAdaptor>(it->get())) {
// If it is the first adaptor in a possible chain, remember it and
// continue.
if (!lastAdaptor) {
lastAdaptor = currentAdaptor;
continue;
}
// Otherwise, merge into the existing adaptor and delete the current one.
currentAdaptor->mergeInto(*lastAdaptor);
it->reset();
// If the verifier is enabled, then next pass is a verifier run so
// drop it. Verifier passes are inserted after every pass, so this one
// would be a duplicate.
if (verifyPasses) {
assert(std::next(it) != e && isa<VerifierPass>(*std::next(it)));
(++it)->reset();
}
} else if (lastAdaptor && !isa<VerifierPass>(*it)) {
// If this pass is not an adaptor and not a verifier pass, then coalesce
// and forget any existing adaptor.
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
lastAdaptor = nullptr;
}
}
// If there was an adaptor at the end of the manager, coalesce it as well.
if (lastAdaptor) {
for (auto &pm : lastAdaptor->getPassManagers())
pm.getImpl().coalesceAdjacentAdaptorPasses();
}
// Now that the adaptors have been merged, erase the empty slot corresponding
// to the merged adaptors that were nulled-out in the loop above.
llvm::erase_if(passes, std::logical_not<std::unique_ptr<Pass>>());
}
void OpPassManagerImpl::splitAdaptorPasses() {
std::vector<std::unique_ptr<Pass>> oldPasses;
std::swap(passes, oldPasses);
for (std::unique_ptr<Pass> &pass : oldPasses) {
// If this pass isn't an adaptor, move it directly to the new pass list.
auto *currentAdaptor = dyn_cast<OpToOpPassAdaptor>(pass.get());
if (!currentAdaptor) {
passes.push_back(std::move(pass));
continue;
}
// Otherwise, split the adaptors of each manager within the adaptor.
for (OpPassManager &adaptorPM : currentAdaptor->getPassManagers()) {
adaptorPM.getImpl().splitAdaptorPasses();
// Add all non-verifier passes to this pass manager.
for (std::unique_ptr<Pass> &nestedPass : adaptorPM.getImpl().passes) {
if (!isa<VerifierPass>(nestedPass.get()))
nest(adaptorPM.getOpName()).addPass(std::move(nestedPass));
}
}
}
}
//===----------------------------------------------------------------------===//
// OpPassManager
//===----------------------------------------------------------------------===//
OpPassManager::OpPassManager(OperationName name, bool verifyPasses)
: impl(new OpPassManagerImpl(name, verifyPasses)) {
assert(name.getAbstractOperation() &&
"OpPassManager can only operate on registered operations");
assert(name.getAbstractOperation()->hasProperty(
OperationProperty::IsolatedFromAbove) &&
"OpPassManager only supports operating on operations marked as "
"'IsolatedFromAbove'");
}
OpPassManager::OpPassManager(OpPassManager &&rhs) : impl(std::move(rhs.impl)) {}
OpPassManager::OpPassManager(const OpPassManager &rhs) { *this = rhs; }
OpPassManager &OpPassManager::operator=(const OpPassManager &rhs) {
impl.reset(new OpPassManagerImpl(rhs.impl->name, rhs.impl->verifyPasses));
for (auto &pass : rhs.impl->passes)
impl->passes.emplace_back(pass->clone());
return *this;
}
OpPassManager::~OpPassManager() {}
OpPassManager::pass_iterator OpPassManager::begin() {
return MutableArrayRef<std::unique_ptr<Pass>>{impl->passes}.begin();
}
OpPassManager::pass_iterator OpPassManager::end() {
return MutableArrayRef<std::unique_ptr<Pass>>{impl->passes}.end();
}
OpPassManager::const_pass_iterator OpPassManager::begin() const {
return ArrayRef<std::unique_ptr<Pass>>{impl->passes}.begin();
}
OpPassManager::const_pass_iterator OpPassManager::end() const {
return ArrayRef<std::unique_ptr<Pass>>{impl->passes}.end();
}
/// Nest a new operation pass manager for the given operation kind under this
/// pass manager.
OpPassManager &OpPassManager::nest(const OperationName &nestedName) {
return impl->nest(nestedName);
}
OpPassManager &OpPassManager::nest(StringRef nestedName) {
return impl->nest(nestedName);
}
/// Add the given pass to this pass manager. If this pass has a concrete
/// operation type, it must be the same type as this pass manager.
void OpPassManager::addPass(std::unique_ptr<Pass> pass) {
impl->addPass(std::move(pass));
}
/// Returns the number of passes held by this manager.
size_t OpPassManager::size() const { return impl->passes.size(); }
/// Returns the internal implementation instance.
OpPassManagerImpl &OpPassManager::getImpl() { return *impl; }
/// Return an instance of the context.
MLIRContext *OpPassManager::getContext() const { return impl->getContext(); }
/// Return the operation name that this pass manager operates on.
const OperationName &OpPassManager::getOpName() const { return impl->name; }
/// Prints out the given passes as the textual representation of a pipeline.
static void printAsTextualPipeline(ArrayRef<std::unique_ptr<Pass>> passes,
raw_ostream &os) {
// Filter out passes that are not part of the public pipeline.
auto filteredPasses =
llvm::make_filter_range(passes, [](const std::unique_ptr<Pass> &pass) {
return !isa<VerifierPass>(pass);
});
llvm::interleaveComma(filteredPasses, os,
[&](const std::unique_ptr<Pass> &pass) {
pass->printAsTextualPipeline(os);
});
}
/// Prints out the passes of the pass manager as the textual representation
/// of pipelines.
void OpPassManager::printAsTextualPipeline(raw_ostream &os) {
::printAsTextualPipeline(impl->passes, os);
}
static void registerDialectsForPipeline(const OpPassManager &pm,
DialectRegistry &dialects) {
for (const Pass &pass : pm.getPasses())
pass.getDependentDialects(dialects);
}
void OpPassManager::getDependentDialects(DialectRegistry &dialects) const {
registerDialectsForPipeline(*this, dialects);
}
//===----------------------------------------------------------------------===//
// OpToOpPassAdaptor
//===----------------------------------------------------------------------===//
LogicalResult OpToOpPassAdaptor::run(Pass *pass, Operation *op,
AnalysisManager am) {
pass->passState.emplace(op, am);
// Instrument before the pass has run.
PassInstrumentor *pi = am.getPassInstrumentor();
if (pi)
pi->runBeforePass(pass, op);
// Invoke the virtual runOnOperation method.
pass->runOnOperation();
// Invalidate any non preserved analyses.
am.invalidate(pass->passState->preservedAnalyses);
// Instrument after the pass has run.
bool passFailed = pass->passState->irAndPassFailed.getInt();
if (pi) {
if (passFailed)
pi->runAfterPassFailed(pass, op);
else
pi->runAfterPass(pass, op);
}
// Return if the pass signaled a failure.
return failure(passFailed);
}
/// Run the given operation and analysis manager on a provided op pass manager.
LogicalResult OpToOpPassAdaptor::runPipeline(
iterator_range<OpPassManager::pass_iterator> passes, Operation *op,
AnalysisManager am) {
auto scope_exit = llvm::make_scope_exit([&] {
// Clear out any computed operation analyses. These analyses won't be used
// any more in this pipeline, and this helps reduce the current working set
// of memory. If preserving these analyses becomes important in the future
// we can re-evaluate this.
am.clear();
});
// Run the pipeline over the provided operation.
for (Pass &pass : passes)
if (failed(run(&pass, op, am)))
return failure();
return success();
}
/// Find an operation pass manager that can operate on an operation of the given
/// type, or nullptr if one does not exist.
static OpPassManager *findPassManagerFor(MutableArrayRef<OpPassManager> mgrs,
const OperationName &name) {
auto it = llvm::find_if(
mgrs, [&](OpPassManager &mgr) { return mgr.getOpName() == name; });
return it == mgrs.end() ? nullptr : &*it;
}
OpToOpPassAdaptor::OpToOpPassAdaptor(OpPassManager &&mgr) {
mgrs.emplace_back(std::move(mgr));
}
void OpToOpPassAdaptor::getDependentDialects(DialectRegistry &dialects) const {
for (auto &pm : mgrs)
pm.getDependentDialects(dialects);
}
/// Merge the current pass adaptor into given 'rhs'.
void OpToOpPassAdaptor::mergeInto(OpToOpPassAdaptor &rhs) {
for (auto &pm : mgrs) {
// If an existing pass manager exists, then merge the given pass manager
// into it.
if (auto *existingPM = findPassManagerFor(rhs.mgrs, pm.getOpName())) {
pm.getImpl().mergeInto(existingPM->getImpl());
} else {
// Otherwise, add the given pass manager to the list.
rhs.mgrs.emplace_back(std::move(pm));
}
}
mgrs.clear();
// After coalescing, sort the pass managers within rhs by name.
llvm::array_pod_sort(rhs.mgrs.begin(), rhs.mgrs.end(),
[](const OpPassManager *lhs, const OpPassManager *rhs) {
return lhs->getOpName().getStringRef().compare(
rhs->getOpName().getStringRef());
});
}
/// Returns the adaptor pass name.
std::string OpToOpPassAdaptor::getAdaptorName() {
std::string name = "Pipeline Collection : [";
llvm::raw_string_ostream os(name);
llvm::interleaveComma(getPassManagers(), os, [&](OpPassManager &pm) {
os << '\'' << pm.getOpName() << '\'';
});
os << ']';
return os.str();
}
/// Run the held pipeline over all nested operations.
void OpToOpPassAdaptor::runOnOperation() {
if (getContext().isMultithreadingEnabled())
runOnOperationAsyncImpl();
else
runOnOperationImpl();
}
/// Run this pass adaptor synchronously.
void OpToOpPassAdaptor::runOnOperationImpl() {
auto am = getAnalysisManager();
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
auto *mgr = findPassManagerFor(mgrs, op.getName());
if (!mgr)
continue;
// Run the held pipeline over the current operation.
if (instrumentor)
instrumentor->runBeforePipeline(mgr->getOpName(), parentInfo);
auto result = runPipeline(mgr->getPasses(), &op, am.slice(&op));
if (instrumentor)
instrumentor->runAfterPipeline(mgr->getOpName(), parentInfo);
if (failed(result))
return signalPassFailure();
}
}
}
}
/// Utility functor that checks if the two ranges of pass managers have a size
/// mismatch.
static bool hasSizeMismatch(ArrayRef<OpPassManager> lhs,
ArrayRef<OpPassManager> rhs) {
return lhs.size() != rhs.size() ||
llvm::any_of(llvm::seq<size_t>(0, lhs.size()),
[&](size_t i) { return lhs[i].size() != rhs[i].size(); });
}
/// Run this pass adaptor synchronously.
void OpToOpPassAdaptor::runOnOperationAsyncImpl() {
AnalysisManager am = getAnalysisManager();
// Create the async executors if they haven't been created, or if the main
// pipeline has changed.
if (asyncExecutors.empty() || hasSizeMismatch(asyncExecutors.front(), mgrs))
asyncExecutors.assign(llvm::hardware_concurrency().compute_thread_count(),
mgrs);
// Run a prepass over the module to collect the operations to execute over.
// This ensures that an analysis manager exists for each operation, as well as
// providing a queue of operations to execute over.
std::vector<std::pair<Operation *, AnalysisManager>> opAMPairs;
for (auto &region : getOperation()->getRegions()) {
for (auto &block : region) {
for (auto &op : block) {
// Add this operation iff the name matches the any of the pass managers.
if (findPassManagerFor(mgrs, op.getName()))
opAMPairs.emplace_back(&op, am.slice(&op));
}
}
}
// A parallel diagnostic handler that provides deterministic diagnostic
// ordering.
ParallelDiagnosticHandler diagHandler(&getContext());
// An index for the current operation/analysis manager pair.
std::atomic<unsigned> opIt(0);
// Get the current thread for this adaptor.
PassInstrumentation::PipelineParentInfo parentInfo = {llvm::get_threadid(),
this};
auto *instrumentor = am.getPassInstrumentor();
// An atomic failure variable for the async executors.
std::atomic<bool> passFailed(false);
llvm::parallelForEach(
asyncExecutors.begin(),
std::next(asyncExecutors.begin(),
std::min(asyncExecutors.size(), opAMPairs.size())),
[&](MutableArrayRef<OpPassManager> pms) {
for (auto e = opAMPairs.size(); !passFailed && opIt < e;) {
// Get the next available operation index.
unsigned nextID = opIt++;
if (nextID >= e)
break;
// Set the order id for this thread in the diagnostic handler.
diagHandler.setOrderIDForThread(nextID);
// Get the pass manager for this operation and execute it.
auto &it = opAMPairs[nextID];
auto *pm = findPassManagerFor(pms, it.first->getName());
assert(pm && "expected valid pass manager for operation");
if (instrumentor)
instrumentor->runBeforePipeline(pm->getOpName(), parentInfo);
auto pipelineResult =
runPipeline(pm->getPasses(), it.first, it.second);
if (instrumentor)
instrumentor->runAfterPipeline(pm->getOpName(), parentInfo);
// Drop this thread from being tracked by the diagnostic handler.
// After this task has finished, the thread may be used outside of
// this pass manager context meaning that we don't want to track
// diagnostics from it anymore.
diagHandler.eraseOrderIDForThread();
// Handle a failed pipeline result.
if (failed(pipelineResult)) {
passFailed = true;
break;
}
}
});
// Signal a failure if any of the executors failed.
if (passFailed)
signalPassFailure();
}
//===----------------------------------------------------------------------===//
// PassCrashReproducer
//===----------------------------------------------------------------------===//
namespace {
/// This class contains all of the context for generating a recovery reproducer.
/// Each recovery context is registered globally to allow for generating
/// reproducers when a signal is raised, such as a segfault.
struct RecoveryReproducerContext {
RecoveryReproducerContext(MutableArrayRef<std::unique_ptr<Pass>> passes,
ModuleOp module, StringRef filename,
bool disableThreads, bool verifyPasses);
~RecoveryReproducerContext();
/// Generate a reproducer with the current context.
LogicalResult generate(std::string &error);
private:
/// This function is invoked in the event of a crash.
static void crashHandler(void *);
/// Register a signal handler to run in the event of a crash.
static void registerSignalHandler();
/// The textual description of the currently executing pipeline.
std::string pipeline;
/// The MLIR module representing the IR before the crash.
OwningModuleRef module;
/// The filename to use when generating the reproducer.
StringRef filename;
/// Various pass manager and context flags.
bool disableThreads;
bool verifyPasses;
/// The current set of active reproducer contexts. This is used in the event
/// of a crash. This is not thread_local as the pass manager may produce any
/// number of child threads. This uses a set to allow for multiple MLIR pass
/// managers to be running at the same time.
static llvm::ManagedStatic<llvm::sys::SmartMutex<true>> reproducerMutex;
static llvm::ManagedStatic<
llvm::SmallSetVector<RecoveryReproducerContext *, 1>>
reproducerSet;
};
} // end anonymous namespace
llvm::ManagedStatic<llvm::sys::SmartMutex<true>>
RecoveryReproducerContext::reproducerMutex;
llvm::ManagedStatic<llvm::SmallSetVector<RecoveryReproducerContext *, 1>>
RecoveryReproducerContext::reproducerSet;
RecoveryReproducerContext::RecoveryReproducerContext(
MutableArrayRef<std::unique_ptr<Pass>> passes, ModuleOp module,
StringRef filename, bool disableThreads, bool verifyPasses)
: module(module.clone()), filename(filename),
disableThreads(disableThreads), verifyPasses(verifyPasses) {
// Grab the textual pipeline being executed..
{
llvm::raw_string_ostream pipelineOS(pipeline);
::printAsTextualPipeline(passes, pipelineOS);
}
// Make sure that the handler is registered, and update the current context.
llvm::sys::SmartScopedLock<true> producerLock(*reproducerMutex);
registerSignalHandler();
reproducerSet->insert(this);
}
RecoveryReproducerContext::~RecoveryReproducerContext() {
llvm::sys::SmartScopedLock<true> producerLock(*reproducerMutex);
reproducerSet->remove(this);
}
LogicalResult RecoveryReproducerContext::generate(std::string &error) {
std::unique_ptr<llvm::ToolOutputFile> outputFile =
mlir::openOutputFile(filename, &error);
if (!outputFile)
return failure();
auto &outputOS = outputFile->os();
// Output the current pass manager configuration.
outputOS << "// configuration: -pass-pipeline='" << pipeline << "'";
if (disableThreads)
outputOS << " -mlir-disable-threading";
// TODO: Should this also be configured with a pass manager flag?
outputOS << "\n// note: verifyPasses=" << (verifyPasses ? "true" : "false")
<< "\n";
// Output the .mlir module.
module->print(outputOS);
outputFile->keep();
return success();
}
void RecoveryReproducerContext::crashHandler(void *) {
// Walk the current stack of contexts and generate a reproducer for each one.
// We can't know for certain which one was the cause, so we need to generate
// a reproducer for all of them.
std::string ignored;
for (RecoveryReproducerContext *context : *reproducerSet)
context->generate(ignored);
}
void RecoveryReproducerContext::registerSignalHandler() {
// Ensure that the handler is only registered once.
static bool registered =
(llvm::sys::AddSignalHandler(crashHandler, nullptr), false);
(void)registered;
}
/// Run the pass manager with crash recover enabled.
LogicalResult PassManager::runWithCrashRecovery(ModuleOp module,
AnalysisManager am) {
// If this isn't a local producer, run all of the passes in recovery mode.
if (!localReproducer)
return runWithCrashRecovery(impl->passes, module, am);
// Split the passes within adaptors to ensure that each pass can be run in
// isolation.
impl->splitAdaptorPasses();
// If this is a local producer, run each of the passes individually. If the
// verifier is enabled, each pass will have a verifier after. This is included
// in the recovery run.
unsigned stride = impl->verifyPasses ? 2 : 1;
MutableArrayRef<std::unique_ptr<Pass>> passes = impl->passes;
for (unsigned i = 0, e = passes.size(); i != e; i += stride) {
if (failed(runWithCrashRecovery(passes.slice(i, stride), module, am)))
return failure();
}
return success();
}
/// Run the given passes with crash recover enabled.
LogicalResult
PassManager::runWithCrashRecovery(MutableArrayRef<std::unique_ptr<Pass>> passes,
ModuleOp module, AnalysisManager am) {
RecoveryReproducerContext context(passes, module, *crashReproducerFileName,
!getContext()->isMultithreadingEnabled(),
impl->verifyPasses);
// Safely invoke the passes within a recovery context.
llvm::CrashRecoveryContext::Enable();
LogicalResult passManagerResult = failure();
llvm::CrashRecoveryContext recoveryContext;
recoveryContext.RunSafelyOnThread([&] {
for (std::unique_ptr<Pass> &pass : passes)
if (failed(OpToOpPassAdaptor::run(pass.get(), module, am)))
return;
passManagerResult = success();
});
llvm::CrashRecoveryContext::Disable();
if (succeeded(passManagerResult))
return success();
std::string error;
if (failed(context.generate(error)))
return module.emitError("<MLIR-PassManager-Crash-Reproducer>: ") << error;
return module.emitError()
<< "A failure has been detected while processing the MLIR module, a "
"reproducer has been generated in '"
<< *crashReproducerFileName << "'";
}
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
PassManager::PassManager(MLIRContext *ctx, bool verifyPasses)
: OpPassManager(OperationName(ModuleOp::getOperationName(), ctx),
verifyPasses),
passTiming(false), localReproducer(false) {}
PassManager::~PassManager() {}
/// Run the passes within this manager on the provided module.
LogicalResult PassManager::run(ModuleOp module) {
// Before running, make sure to coalesce any adjacent pass adaptors in the
// pipeline.
getImpl().coalesceAdjacentAdaptorPasses();
// Register all dialects for the current pipeline.
DialectRegistry dependentDialects;
getDependentDialects(dependentDialects);
dependentDialects.loadAll(module.getContext());
// Construct an analysis manager for the pipeline.
ModuleAnalysisManager am(module, instrumentor.get());
// Notify the context that we start running a pipeline for book keeping.
module.getContext()->enterMultiThreadedExecution();
// If reproducer generation is enabled, run the pass manager with crash
// handling enabled.
LogicalResult result =
crashReproducerFileName
? runWithCrashRecovery(module, am)
: OpToOpPassAdaptor::runPipeline(getPasses(), module, am);
// Notify the context that the run is done.
module.getContext()->exitMultiThreadedExecution();
// Dump all of the pass statistics if necessary.
if (passStatisticsMode)
dumpStatistics();
return result;
}
/// Enable support for the pass manager to generate a reproducer on the event
/// of a crash or a pass failure. `outputFile` is a .mlir filename used to write
/// the generated reproducer. If `genLocalReproducer` is true, the pass manager
/// will attempt to generate a local reproducer that contains the smallest
/// pipeline.
void PassManager::enableCrashReproducerGeneration(StringRef outputFile,
bool genLocalReproducer) {
crashReproducerFileName = std::string(outputFile);
localReproducer = genLocalReproducer;
}
/// Add the provided instrumentation to the pass manager.
void PassManager::addInstrumentation(std::unique_ptr<PassInstrumentation> pi) {
if (!instrumentor)
instrumentor = std::make_unique<PassInstrumentor>();
instrumentor->addInstrumentation(std::move(pi));
}
//===----------------------------------------------------------------------===//
// AnalysisManager
//===----------------------------------------------------------------------===//
/// Returns a pass instrumentation object for the current operation.
PassInstrumentor *AnalysisManager::getPassInstrumentor() const {
ParentPointerT curParent = parent;
while (auto *parentAM = curParent.dyn_cast<const AnalysisManager *>())
curParent = parentAM->parent;
return curParent.get<const ModuleAnalysisManager *>()->getPassInstrumentor();
}
/// Get an analysis manager for the given child operation.
AnalysisManager AnalysisManager::slice(Operation *op) {
assert(op->getParentOp() == impl->getOperation() &&
"'op' has a different parent operation");
auto it = impl->childAnalyses.find(op);
if (it == impl->childAnalyses.end())
it = impl->childAnalyses
.try_emplace(op, std::make_unique<NestedAnalysisMap>(op))
.first;
return {this, it->second.get()};
}
/// Invalidate any non preserved analyses.
void detail::NestedAnalysisMap::invalidate(
const detail::PreservedAnalyses &pa) {
// If all analyses were preserved, then there is nothing to do here.
if (pa.isAll())
return;
// Invalidate the analyses for the current operation directly.
analyses.invalidate(pa);
// If no analyses were preserved, then just simply clear out the child
// analysis results.
if (pa.isNone()) {
childAnalyses.clear();
return;
}
// Otherwise, invalidate each child analysis map.
SmallVector<NestedAnalysisMap *, 8> mapsToInvalidate(1, this);
while (!mapsToInvalidate.empty()) {
auto *map = mapsToInvalidate.pop_back_val();
for (auto &analysisPair : map->childAnalyses) {
analysisPair.second->invalidate(pa);
if (!analysisPair.second->childAnalyses.empty())
mapsToInvalidate.push_back(analysisPair.second.get());
}
}
}
//===----------------------------------------------------------------------===//
// PassInstrumentation
//===----------------------------------------------------------------------===//
PassInstrumentation::~PassInstrumentation() {}
//===----------------------------------------------------------------------===//
// PassInstrumentor
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct PassInstrumentorImpl {
/// Mutex to keep instrumentation access thread-safe.
llvm::sys::SmartMutex<true> mutex;
/// Set of registered instrumentations.
std::vector<std::unique_ptr<PassInstrumentation>> instrumentations;
};
} // end namespace detail
} // end namespace mlir
PassInstrumentor::PassInstrumentor() : impl(new PassInstrumentorImpl()) {}
PassInstrumentor::~PassInstrumentor() {}
/// See PassInstrumentation::runBeforePipeline for details.
void PassInstrumentor::runBeforePipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePipeline(name, parentInfo);
}
/// See PassInstrumentation::runAfterPipeline for details.
void PassInstrumentor::runAfterPipeline(
const OperationName &name,
const PassInstrumentation::PipelineParentInfo &parentInfo) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPipeline(name, parentInfo);
}
/// See PassInstrumentation::runBeforePass for details.
void PassInstrumentor::runBeforePass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforePass(pass, op);
}
/// See PassInstrumentation::runAfterPass for details.
void PassInstrumentor::runAfterPass(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPass(pass, op);
}
/// See PassInstrumentation::runAfterPassFailed for details.
void PassInstrumentor::runAfterPassFailed(Pass *pass, Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterPassFailed(pass, op);
}
/// See PassInstrumentation::runBeforeAnalysis for details.
void PassInstrumentor::runBeforeAnalysis(StringRef name, TypeID id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : impl->instrumentations)
instr->runBeforeAnalysis(name, id, op);
}
/// See PassInstrumentation::runAfterAnalysis for details.
void PassInstrumentor::runAfterAnalysis(StringRef name, TypeID id,
Operation *op) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
for (auto &instr : llvm::reverse(impl->instrumentations))
instr->runAfterAnalysis(name, id, op);
}
/// Add the given instrumentation to the collection.
void PassInstrumentor::addInstrumentation(
std::unique_ptr<PassInstrumentation> pi) {
llvm::sys::SmartScopedLock<true> instrumentationLock(impl->mutex);
impl->instrumentations.emplace_back(std::move(pi));
}