Find a file
2022-01-12 14:40:09 -05:00
.github github: Add action for automated issue notification 2022-01-05 10:36:29 -08:00
bolt [BOLT][TEST] Move exceptions-instrumentation.test to X86 2022-01-12 09:25:12 -08:00
clang [RISCV] Update recently ratified Zb{a,b,c,s} extensions to no longer be experimental 2022-01-12 19:33:44 +00:00
clang-tools-extra [clang-tidy] UseDefaultMemberInitCheck::checkDefaultInit - Use cast<> instead of dyn_cast<> to avoid dereference of nullptr 2022-01-12 15:35:37 +00:00
cmake [doc][cmake] Convert read-me for the common CMake utils to reST 2022-01-10 21:36:11 +00:00
compiler-rt [UBSan] Relax test expectations in Misc/objc-cast.m test 2022-01-12 05:25:02 -08:00
cross-project-tests [Dexter] Allow DexUnreachable in supplementary .dex files 2022-01-10 16:22:53 +00:00
flang [flang] Fix overallocation by fir-to-llvm-ir pass 2022-01-12 10:08:50 +00:00
libc [libc][NFC] Move sys/mman entrypoints to the default build configs. 2022-01-11 16:51:10 +00:00
libclc Quote some more destination paths with variables 2021-12-13 17:29:08 +00:00
libcxx [libc++] [ranges] SFINAE away ranges::cbegin(const T&&) for non-borrowed T. 2022-01-12 13:25:41 -05:00
libcxxabi [libc++][libc++abi][libunwind] Dedup install path var definitions 2022-01-11 18:24:50 +00:00
libunwind [libc++][libc++abi][libunwind] Dedup install path var definitions 2022-01-11 18:24:50 +00:00
lld [llvm-ar][test] Test that --plugin is ignored 2022-01-12 11:32:31 -08:00
lldb [lldb] Disable one more watchpoint test on Windows 2022-01-12 08:55:48 -08:00
llvm Revert "[JITLink][AArch64] Add support for splitting eh-frames on AArch64." 2022-01-12 14:40:09 -05:00
mlir [MLIR][Math] Enable constant folding of ops 2022-01-12 12:19:29 -05:00
openmp [openmp][amdgpu] Replace unsigned long with uint64_t 2022-01-10 22:19:30 +00:00
polly [SCEV] Sequential/in-order UMin expression 2022-01-10 20:51:26 +03:00
pstl
runtimes [CMake] Use LLVM_COMMON_CMAKE_UTILS in runtimes just for clarity 2022-01-03 20:55:44 +00:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir] Update BUILD rule for MathDialect. 2022-01-12 18:11:31 +00:00
.arcconfig
.arclint
.clang-format
.clang-tidy Add IgnoreBaseInCopyConstructors to .clang-tidy 2022-01-03 13:41:32 -08:00
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, compiler-rt,cross-project-tests, flang, libc, libclc, libcxx, libcxxabi, libunwind, lld, lldb, mlir, openmp, polly, or pstl.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.