llvm/flang/lib/semantics/expression.cc
peter klausler 5f43f78b82 [flang] more operators
Original-commit: flang-compiler/f18@4925b4b944
Reviewed-on: https://github.com/flang-compiler/f18/pull/183
Tree-same-pre-rewrite: false
2018-09-12 16:29:11 -07:00

502 lines
18 KiB
C++

// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "expression.h"
#include "symbol.h"
#include "../common/idioms.h"
#include "../evaluate/common.h"
#include "../evaluate/tools.h"
#include <functional>
#include <optional>
using namespace Fortran::parser::literals;
namespace Fortran::evaluate {
using common::TypeCategory;
using MaybeExpr = std::optional<Expr<SomeType>>;
template<typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
if (x.has_value()) {
return {AsGenericExpr(AsCategoryExpr(AsExpr(std::move(*x))))};
}
return std::nullopt;
}
template<TypeCategory CAT, int KIND>
MaybeExpr PackageGeneric(std::optional<Expr<Type<CAT, KIND>>> &&x) {
if (x.has_value()) {
return {AsGenericExpr(AsCategoryExpr(std::move(*x)))};
}
return std::nullopt;
}
template<TypeCategory CAT>
MaybeExpr AsMaybeExpr(std::optional<Expr<SomeKind<CAT>>> &&x) {
if (x.has_value()) {
return {AsGenericExpr(std::move(*x))};
}
return std::nullopt;
}
// This local class wraps some state and a highly overloaded
// Analyze() member function that converts parse trees into generic
// expressions.
struct ExprAnalyzer {
using MaybeIntExpr = std::optional<Expr<SomeInteger>>;
ExprAnalyzer(
FoldingContext &ctx, const semantics::IntrinsicTypeDefaultKinds &dfts)
: context{ctx}, defaults{dfts} {}
int Analyze(
const std::optional<parser::KindParam> &, int defaultKind, int kanjiKind);
MaybeExpr Analyze(const parser::Expr &);
MaybeExpr Analyze(const parser::LiteralConstant &);
MaybeExpr Analyze(const parser::HollerithLiteralConstant &);
MaybeExpr Analyze(const parser::IntLiteralConstant &);
MaybeExpr Analyze(const parser::SignedIntLiteralConstant &);
MaybeExpr Analyze(const parser::RealLiteralConstant &);
MaybeExpr Analyze(const parser::SignedRealLiteralConstant &);
MaybeExpr Analyze(const parser::ComplexLiteralConstant &);
MaybeExpr Analyze(const parser::BOZLiteralConstant &);
MaybeExpr Analyze(const parser::CharLiteralConstant &);
MaybeExpr Analyze(const parser::LogicalLiteralConstant &);
MaybeExpr Analyze(const parser::Name &);
MaybeExpr Analyze(const parser::NamedConstant &);
MaybeExpr Analyze(const parser::ComplexPart &);
MaybeExpr Analyze(const parser::Expr::Parentheses &);
MaybeExpr Analyze(const parser::Expr::UnaryPlus &); // TODO
MaybeExpr Analyze(const parser::Expr::Negate &); // TODO
MaybeExpr Analyze(const parser::Expr::NOT &); // TODO
MaybeExpr Analyze(const parser::Expr::DefinedUnary &); // TODO
MaybeExpr Analyze(const parser::Expr::Power &); // TODO
MaybeExpr Analyze(const parser::Expr::Multiply &);
MaybeExpr Analyze(const parser::Expr::Divide &);
MaybeExpr Analyze(const parser::Expr::Add &);
MaybeExpr Analyze(const parser::Expr::Subtract &);
MaybeExpr Analyze(const parser::Expr::Concat &); // TODO
MaybeExpr Analyze(const parser::Expr::LT &); // TODO
MaybeExpr Analyze(const parser::Expr::LE &); // TODO
MaybeExpr Analyze(const parser::Expr::EQ &); // TODO
MaybeExpr Analyze(const parser::Expr::NE &); // TODO
MaybeExpr Analyze(const parser::Expr::GE &); // TODO
MaybeExpr Analyze(const parser::Expr::GT &); // TODO
MaybeExpr Analyze(const parser::Expr::AND &); // TODO
MaybeExpr Analyze(const parser::Expr::OR &); // TODO
MaybeExpr Analyze(const parser::Expr::EQV &); // TODO
MaybeExpr Analyze(const parser::Expr::NEQV &); // TODO
MaybeExpr Analyze(const parser::Expr::XOR &); // TODO
MaybeExpr Analyze(const parser::Expr::ComplexConstructor &);
MaybeExpr Analyze(const parser::Expr::DefinedBinary &); // TODO
// TODO more remain
std::optional<Expr<SomeComplex>> ConstructComplex(MaybeExpr &&, MaybeExpr &&);
FoldingContext &context;
const semantics::IntrinsicTypeDefaultKinds &defaults;
};
// This helper template function handles the Scalar<>, Integer<>, and
// Constant<> wrappers in the parse tree.
// C++ doesn't allow template specialization in a class, so this helper
// template function must be outside ExprAnalyzer and reflect back into it.
template<typename A> MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const A &x) {
return ea.Analyze(x);
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Scalar<A> &x) {
// TODO: check rank == 0
return AnalyzeHelper(ea, x.thing);
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Integer<A> &x) {
if (auto result{AnalyzeHelper(ea, x.thing)}) {
if (std::holds_alternative<Expr<SomeInteger>>(result->u)) {
return result;
}
ea.context.messages.Say("expression must be INTEGER"_err_en_US);
}
return std::nullopt;
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Constant<A> &x) {
if (MaybeExpr result{AnalyzeHelper(ea, x.thing)}) {
if (std::optional<Constant<SomeType>> folded{result->Fold(ea.context)}) {
return {AsGenericExpr(std::move(*folded))};
}
ea.context.messages.Say("expression must be constant"_err_en_US);
}
return std::nullopt;
}
template<typename... As>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const std::variant<As...> &u) {
return std::visit([&](const auto &x) { return AnalyzeHelper(ea, x); }, u);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr &expr) {
return std::visit(common::visitors{[&](const parser::LiteralConstant &c) {
return AnalyzeHelper(*this, c);
},
// TODO: remaining cases
[&](const auto &) { return MaybeExpr{}; }},
expr.u);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::LiteralConstant &x) {
return std::visit([&](const auto &c) { return Analyze(c); }, x.u);
}
int ExprAnalyzer::Analyze(const std::optional<parser::KindParam> &kindParam,
int defaultKind, int kanjiKind = -1) {
if (!kindParam.has_value()) {
return defaultKind;
}
return std::visit(
common::visitors{[](std::uint64_t k) { return static_cast<int>(k); },
[&](const parser::Scalar<
parser::Integer<parser::Constant<parser::Name>>> &n) {
if (MaybeExpr ie{AnalyzeHelper(*this, n)}) {
if (std::optional<GenericScalar> sv{ie->ScalarValue()}) {
if (std::optional<std::int64_t> i64{sv->ToInt64()}) {
std::int64_t i64v{*i64};
int iv = i64v;
if (iv == i64v) {
return iv;
}
}
}
}
context.messages.Say(
"KIND type parameter must be a scalar integer constant"_err_en_US);
return defaultKind;
},
[&](parser::KindParam::Kanji) {
if (kanjiKind >= 0) {
return kanjiKind;
}
context.messages.Say("Kanji not allowed here"_err_en_US);
return defaultKind;
}},
kindParam->u);
}
// A helper class used with common::SearchDynamicTypes when constructing
// a literal constant with a dynamic kind in some type category.
template<TypeCategory CAT, typename VALUE> struct ConstantTypeVisitor {
using Result = std::optional<Expr<SomeKind<CAT>>>;
static constexpr std::size_t Types{std::tuple_size_v<CategoryTypes<CAT>>};
ConstantTypeVisitor(int k, const VALUE &x) : kind{k}, value{x} {}
template<std::size_t J> Result Test() {
using Ty = std::tuple_element_t<J, CategoryTypes<CAT>>;
if (kind == Ty::kind) {
return {AsCategoryExpr(AsExpr(Constant<Ty>{std::move(value)}))};
}
return std::nullopt;
}
int kind;
VALUE value;
};
MaybeExpr ExprAnalyzer::Analyze(const parser::HollerithLiteralConstant &x) {
return AsMaybeExpr(common::SearchDynamicTypes(
ConstantTypeVisitor<TypeCategory::Character, std::string>{
defaults.defaultCharacterKind, x.v}));
}
// Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
template<typename PARSED>
MaybeExpr IntLiteralConstant(ExprAnalyzer &ea, const PARSED &x) {
int kind{ea.Analyze(std::get<std::optional<parser::KindParam>>(x.t),
ea.defaults.defaultIntegerKind)};
auto value{std::get<0>(x.t)}; // std::(u)int64_t
auto result{common::SearchDynamicTypes(
ConstantTypeVisitor<TypeCategory::Integer, std::int64_t>{
kind, static_cast<std::int64_t>(value)})};
if (!result.has_value()) {
ea.context.messages.Say("unsupported INTEGER(KIND=%u)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
return IntLiteralConstant(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::SignedIntLiteralConstant &x) {
return IntLiteralConstant(*this, x);
}
template<typename TYPE>
Constant<TYPE> ReadRealLiteral(
parser::CharBlock source, FoldingContext &context) {
const char *p{source.begin()};
auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding)};
CHECK(p == source.end());
RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
auto value{valWithFlags.value};
if (context.flushDenormalsToZero) {
value = value.FlushDenormalToZero();
}
return {value};
}
// TODO: can this definition appear in the function belowe?
struct RealTypeVisitor {
using Result = std::optional<Expr<SomeReal>>;
static constexpr std::size_t Types{std::tuple_size_v<RealTypes>};
RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
: kind{k}, literal{lit}, context{ctx} {}
template<std::size_t J> Result Test() {
using Ty = std::tuple_element_t<J, RealTypes>;
if (kind == Ty::kind) {
return {AsCategoryExpr(AsExpr(ReadRealLiteral<Ty>(literal, context)))};
}
return std::nullopt;
}
int kind;
parser::CharBlock literal;
FoldingContext &context;
};
MaybeExpr ExprAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
// Use a local message context around the real literal for better
// provenance on any messages.
parser::ContextualMessages ctxMsgs{x.real.source, context.messages};
FoldingContext localFoldingContext{ctxMsgs, context};
// If a kind parameter appears, it defines the kind of the literal and any
// letter used in an exponent part (e.g., the 'E' in "6.02214E+23")
// should agree. In the absence of an explicit kind parameter, any exponent
// letter determines the kind. Otherwise, defaults apply.
int defaultKind{defaults.defaultRealKind};
const char *end{x.real.source.end()};
std::optional<int> letterKind;
for (const char *p{x.real.source.begin()}; p < end; ++p) {
if (parser::IsLetter(*p)) {
switch (*p) {
case 'e': letterKind = 4; break;
case 'd': letterKind = 8; break;
case 'q': letterKind = 16; break;
default: ctxMsgs.Say("unknown exponent letter '%c'"_err_en_US, *p);
}
break;
}
}
if (letterKind.has_value()) {
defaultKind = *letterKind;
}
auto kind{Analyze(x.kind, defaultKind)};
if (letterKind.has_value() && kind != *letterKind) {
ctxMsgs.Say(
"explicit kind parameter on real constant disagrees with exponent letter"_en_US);
}
auto result{common::SearchDynamicTypes(
RealTypeVisitor{kind, x.real.source, context})};
if (!result.has_value()) {
ctxMsgs.Say("unsupported REAL(KIND=%u)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::SignedRealLiteralConstant &x) {
if (MaybeExpr result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
if (sign == parser::Sign::Negative) {
return {AsGenericExpr(-*common::GetIf<Expr<SomeReal>>(result->u))};
}
}
return result;
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ComplexPart &x) {
return AnalyzeHelper(*this, x.u);
}
// Per F'2018 R718, if both components are INTEGER, they are both converted
// to default REAL and the result is default COMPLEX. Otherwise, the
// kind of the result is the kind of most precise REAL component, and the other
// component is converted if necessary to its type.
std::optional<Expr<SomeComplex>> ExprAnalyzer::ConstructComplex(
MaybeExpr &&real, MaybeExpr &&imaginary) {
if (auto parts{common::AllPresent(std::move(real), std::move(imaginary))}) {
if (auto converted{ConvertRealOperands(context.messages,
std::move(std::get<0>(*parts)), std::move(std::get<1>(*parts)))}) {
return {std::visit(
[](auto &&pair) -> std::optional<Expr<SomeComplex>> {
using realType = ResultType<decltype(pair[0])>;
using zType = SameKind<TypeCategory::Complex, realType>;
auto cmplx{ComplexConstructor<zType::kind>{
std::move(pair[0]), std::move(pair[1])}};
return {AsCategoryExpr(AsExpr(std::move(cmplx)))};
},
std::move(*converted))};
}
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
return AsMaybeExpr(
ConstructComplex(Analyze(std::get<0>(z.t)), Analyze(std::get<1>(z.t))));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
const char *p{x.v.data()};
std::uint64_t base{16};
switch (*p++) {
case 'b': base = 2; break;
case 'o': base = 8; break;
case 'z': break;
case 'x': break;
default: CRASH_NO_CASE;
}
CHECK(*p == '"');
auto value{BOZLiteralConstant::ReadUnsigned(++p, base)};
if (*p != '"') {
context.messages.Say(
"invalid digit ('%c') in BOZ literal %s"_err_en_US, *p, x.v.data());
return std::nullopt;
}
if (value.overflow) {
context.messages.Say("BOZ literal %s too large"_err_en_US, x.v.data());
return std::nullopt;
}
return {AsGenericExpr(value.value)};
}
MaybeExpr ExprAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
int kind{Analyze(std::get<std::optional<parser::KindParam>>(x.t), 1)};
auto value{std::get<std::string>(x.t)};
auto result{common::SearchDynamicTypes(
ConstantTypeVisitor<TypeCategory::Character, std::string>{
kind, std::move(value)})};
if (!result.has_value()) {
context.messages.Say("unsupported CHARACTER(KIND=%u)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
auto kind{Analyze(std::get<std::optional<parser::KindParam>>(x.t),
defaults.defaultLogicalKind)};
bool value{std::get<bool>(x.t)};
auto result{common::SearchDynamicTypes(
ConstantTypeVisitor<TypeCategory::Logical, bool>{
kind, std::move(value)})};
if (!result.has_value()) {
context.messages.Say("unsupported LOGICAL(KIND=%u)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Name &n) {
if (n.symbol != nullptr) {
auto *details{n.symbol->detailsIf<semantics::ObjectEntityDetails>()};
if (details == nullptr ||
!n.symbol->attrs().test(semantics::Attr::PARAMETER)) {
context.messages.Say(
"name (%s) is not a defined constant"_err_en_US, n.ToString().data());
return std::nullopt;
}
// TODO: enumerators, do they have the PARAMETER attribute?
}
return std::nullopt; // TODO parameters and enumerators
}
MaybeExpr ExprAnalyzer::Analyze(const parser::NamedConstant &n) {
return Analyze(n.v);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
if (MaybeExpr operand{AnalyzeHelper(*this, *x.v)}) {
return std::visit(
common::visitors{
[&](BOZLiteralConstant &&boz) {
return operand; // ignore parentheses around typeless
},
[](auto &&catExpr) {
return std::visit(
[](auto &&expr) -> MaybeExpr {
using Ty = ResultType<decltype(expr)>;
if constexpr (common::HasMember<Parentheses<Ty>,
decltype(expr.u)>) {
return {AsGenericExpr(
AsExpr(Parentheses<Ty>{std::move(expr)}))};
}
// TODO: support Parentheses in all Expr specializations
return std::nullopt;
},
std::move(catExpr.u));
}},
std::move(operand->u));
}
return std::nullopt;
}
// TODO: defined operators for illegal intrinsic operator cases
template<template<typename> class OPR, typename PARSED>
MaybeExpr BinaryOperationHelper(ExprAnalyzer &ea, const PARSED &x) {
if (auto both{common::AllPresent(AnalyzeHelper(ea, *std::get<0>(x.t)),
AnalyzeHelper(ea, *std::get<1>(x.t)))}) {
return NumericOperation<OPR>(ea.context.messages,
std::move(std::get<0>(*both)), std::move(std::get<1>(*both)));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Add &x) {
return BinaryOperationHelper<Add>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Subtract &x) {
return BinaryOperationHelper<Subtract>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Multiply &x) {
return BinaryOperationHelper<Multiply>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Divide &x) {
return BinaryOperationHelper<Divide>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::ComplexConstructor &x) {
return AsMaybeExpr(ConstructComplex(AnalyzeHelper(*this, *std::get<0>(x.t)),
AnalyzeHelper(*this, *std::get<1>(x.t))));
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
MaybeExpr AnalyzeExpr(evaluate::FoldingContext &context,
const IntrinsicTypeDefaultKinds &defaults, const parser::Expr &expr) {
return evaluate::ExprAnalyzer{context, defaults}.Analyze(expr);
}
} // namespace Fortran::semantics