Find a file
Nick Desaulniers 5c91b98c5d [ARMISelLowering] avoid emitting libcalls to __mulodi4()
__has_builtin(__builtin_mul_overflow) returns true for 32b ARM targets,
but Clang is deferring to compiler RT when encountering `long long`
types. This breaks sanitizer builds of the Linux kernel that are using
__builtin_mul_overflow with these types for these targets.

If the semantics of __has_builtin mean "the compiler resolves these,
always" then we shouldn't conditionally emit a libcall.

This will still need to be worked around in the Linux kernel in order to
continue to support allmodconfig builds of the Linux kernel for this
target with older releases of clang.

Link: https://bugs.llvm.org/show_bug.cgi?id=28629
Link: https://github.com/ClangBuiltLinux/linux/issues/1438

Reviewed By: rengolin

Differential Revision: https://reviews.llvm.org/D108842
2021-08-27 15:14:47 -07:00
.github
clang [clang-format] Fix AllowAllConstructorInitializersOnNextLine value 2021-08-27 14:47:49 -07:00
clang-tools-extra [clang-tidy] Add bugprone-suspicious-memory-comparison check 2021-08-26 09:23:37 +02:00
compiler-rt Support LLVM_ENABLE_PER_TARGET_RUNTIME_DIR in the sanitizer symbolizer build. 2021-08-27 13:50:19 -07:00
cross-project-tests
flang [flang] Take result length into account in ApplyElementwise folding 2021-08-26 09:46:14 +02:00
libc [libc][NFC] Fix onre more -Wconversion warning in strtoul test code. 2021-08-27 14:12:39 -07:00
libclc libclc: Fix rounding during type conversion 2021-08-19 22:24:19 -07:00
libcxx [libcxx] Use GetSystemTimePreciseAsFileTime() if available 2021-08-27 20:11:29 +03:00
libcxxabi [libc++abi] Apply simplify scan_eh_tab to SjLj 2021-08-24 16:51:53 -04:00
libunwind [libunwind] Don't include cet.h/immintrin.h unconditionally 2021-08-26 11:37:07 +02:00
lld [lld/test/ELF] Test fetch from archive to resolve undefined symbols in shared libs 2021-08-27 14:17:32 -07:00
lldb [trace] [intel pt] Create a "process trace save" command 2021-08-27 09:34:01 -07:00
llvm [ARMISelLowering] avoid emitting libcalls to __mulodi4() 2021-08-27 15:14:47 -07:00
mlir [mlir][sparse] fully implement sparse tensor to sparse tensor conversions 2021-08-27 15:08:18 -07:00
openmp [openmp][amdgpu] Initial gfx10 offloading implementation 2021-08-27 12:34:03 +01:00
parallel-libs
polly polly: remove the old reference to svn in the doc 2021-08-27 10:46:50 +02:00
pstl [libc++] Remove test-suite annotations for unsupported Clang versions 2021-08-20 15:05:13 -04:00
runtimes
utils [mlir][linalg] Replace AffineMinSCFCanonicalizationPattern with SCF reimplementation 2021-08-25 08:52:56 +09:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
.mailmap Simplify a .mailmap entry 2021-08-18 09:16:16 -04:00
CONTRIBUTING.md
README.md
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or cross-project-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.