llvm/flang/lib/semantics/expression.cc
2018-09-12 16:29:22 -07:00

868 lines
31 KiB
C++

// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "expression.h"
#include "dump-parse-tree.h" // TODO temporary
#include "symbol.h"
#include "../common/idioms.h"
#include "../evaluate/common.h"
#include "../evaluate/tools.h"
#include "../parser/parse-tree-visitor.h"
#include "../parser/parse-tree.h"
#include <functional>
#include <iostream> // TODO remove soon
#include <optional>
using namespace Fortran::parser::literals;
// Much of the code that implements semantic analysis of expressions is
// tightly coupled with their typed representations in lib/evaluate,
// and appears here in namespace Fortran::evaluate for convenience.
namespace Fortran::evaluate {
using common::TypeCategory;
using MaybeExpr = std::optional<Expr<SomeType>>;
// A utility subroutine to repackage optional expressions of various levels
// of type specificity as fully general MaybeExpr values.
template<typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
if (x.has_value()) {
return {AsGenericExpr(AsCategoryExpr(AsExpr(std::move(*x))))};
}
return std::nullopt;
}
template<TypeCategory CAT>
MaybeExpr AsMaybeExpr(std::optional<Expr<SomeKind<CAT>>> &&x) {
if (x.has_value()) {
return {AsGenericExpr(std::move(*x))};
}
return std::nullopt;
}
template<TypeCategory CAT, int KIND>
MaybeExpr AsMaybeExpr(std::optional<Expr<Type<CAT, KIND>>> &&x) {
if (x.has_value()) {
return {AsGenericExpr(AsCategoryExpr(std::move(*x)))};
}
return std::nullopt;
}
// This local class wraps some state and a highly overloaded Analyze()
// member function that converts parse trees into (usually) generic
// expressions.
struct ExprAnalyzer {
ExprAnalyzer(
FoldingContext &ctx, const semantics::IntrinsicTypeDefaultKinds &dfts)
: context{ctx}, defaults{dfts} {}
MaybeExpr Analyze(const parser::Expr &);
MaybeExpr Analyze(const parser::CharLiteralConstantSubstring &);
MaybeExpr Analyze(const parser::LiteralConstant &);
MaybeExpr Analyze(const parser::IntLiteralConstant &);
MaybeExpr Analyze(const parser::SignedIntLiteralConstant &);
MaybeExpr Analyze(const parser::RealLiteralConstant &);
MaybeExpr Analyze(const parser::SignedRealLiteralConstant &);
MaybeExpr Analyze(const parser::ComplexLiteralConstant &);
MaybeExpr Analyze(const parser::CharLiteralConstant &);
MaybeExpr Analyze(const parser::LogicalLiteralConstant &);
MaybeExpr Analyze(const parser::HollerithLiteralConstant &);
MaybeExpr Analyze(const parser::BOZLiteralConstant &);
MaybeExpr Analyze(const parser::Name &);
MaybeExpr Analyze(const parser::NamedConstant &);
MaybeExpr Analyze(const parser::Substring &);
MaybeExpr Analyze(const parser::ArrayElement &);
MaybeExpr Analyze(const parser::StructureComponent &);
MaybeExpr Analyze(const parser::TypeParamInquiry &);
MaybeExpr Analyze(const parser::CoindexedNamedObject &);
MaybeExpr Analyze(const parser::ComplexPart &);
MaybeExpr Analyze(const parser::ArrayConstructor &);
MaybeExpr Analyze(const parser::StructureConstructor &);
MaybeExpr Analyze(const parser::Expr::Parentheses &);
MaybeExpr Analyze(const parser::Expr::UnaryPlus &);
MaybeExpr Analyze(const parser::Expr::Negate &);
MaybeExpr Analyze(const parser::Expr::NOT &);
MaybeExpr Analyze(const parser::Expr::PercentLoc &);
MaybeExpr Analyze(const parser::Expr::DefinedUnary &);
MaybeExpr Analyze(const parser::Expr::Power &);
MaybeExpr Analyze(const parser::Expr::Multiply &);
MaybeExpr Analyze(const parser::Expr::Divide &);
MaybeExpr Analyze(const parser::Expr::Add &);
MaybeExpr Analyze(const parser::Expr::Subtract &);
MaybeExpr Analyze(const parser::Expr::Concat &);
MaybeExpr Analyze(const parser::Expr::LT &);
MaybeExpr Analyze(const parser::Expr::LE &);
MaybeExpr Analyze(const parser::Expr::EQ &);
MaybeExpr Analyze(const parser::Expr::NE &);
MaybeExpr Analyze(const parser::Expr::GE &);
MaybeExpr Analyze(const parser::Expr::GT &);
MaybeExpr Analyze(const parser::Expr::AND &);
MaybeExpr Analyze(const parser::Expr::OR &);
MaybeExpr Analyze(const parser::Expr::EQV &);
MaybeExpr Analyze(const parser::Expr::NEQV &);
MaybeExpr Analyze(const parser::Expr::XOR &);
MaybeExpr Analyze(const parser::Expr::ComplexConstructor &);
MaybeExpr Analyze(const parser::Expr::DefinedBinary &);
MaybeExpr Analyze(const parser::FunctionReference &);
// Kind parameter analysis always returns a valid kind value.
int Analyze(
const std::optional<parser::KindParam> &, int defaultKind, int kanjiKind);
std::optional<Subscript> Analyze(const parser::SectionSubscript &);
std::vector<Subscript> Analyze(const std::list<parser::SectionSubscript> &);
std::optional<Expr<SubscriptInteger>> AsSubscript(MaybeExpr &&);
std::optional<Expr<SubscriptInteger>> TripletPart(
const std::optional<parser::Subscript> &);
FoldingContext &context;
const semantics::IntrinsicTypeDefaultKinds &defaults;
};
// This helper template function handles the Scalar<>, Integer<>, and
// Constant<> wrappers in the parse tree, as well as default behavior
// for unions. (C++ doesn't allow template specialization in
// a class, so this helper template function must be outside ExprAnalyzer
// and reflect back into it.)
template<typename A> MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const A &x) {
if constexpr (UnionTrait<A>) {
return AnalyzeHelper(ea, x.u);
} else {
return ea.Analyze(x);
}
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Scalar<A> &x) {
// TODO: check rank == 0
return AnalyzeHelper(ea, x.thing);
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Integer<A> &x) {
if (auto result{AnalyzeHelper(ea, x.thing)}) {
if (std::holds_alternative<Expr<SomeInteger>>(result->u)) {
return result;
}
ea.context.messages.Say("expression must be INTEGER"_err_en_US);
}
return std::nullopt;
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const parser::Constant<A> &x) {
if (MaybeExpr result{AnalyzeHelper(ea, x.thing)}) {
if (std::optional<Constant<SomeType>> folded{result->Fold(ea.context)}) {
return {AsGenericExpr(std::move(*folded))};
}
ea.context.messages.Say("expression must be constant"_err_en_US);
}
return std::nullopt;
}
template<typename... As>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const std::variant<As...> &u) {
return std::visit([&](const auto &x) { return AnalyzeHelper(ea, x); }, u);
}
template<typename A>
MaybeExpr AnalyzeHelper(ExprAnalyzer &ea, const common::Indirection<A> &x) {
return AnalyzeHelper(ea, *x);
}
// Implementations of ExprAnalyzer::Analyze follow for various parse tree
// node types.
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr &x) {
return AnalyzeHelper(*this, x);
}
int ExprAnalyzer::Analyze(const std::optional<parser::KindParam> &kindParam,
int defaultKind, int kanjiKind = -1) {
if (!kindParam.has_value()) {
return defaultKind;
}
return std::visit(
common::visitors{[](std::uint64_t k) { return static_cast<int>(k); },
[&](const parser::Scalar<
parser::Integer<parser::Constant<parser::Name>>> &n) {
if (MaybeExpr ie{AnalyzeHelper(*this, n)}) {
if (std::optional<GenericScalar> sv{ie->ScalarValue()}) {
if (std::optional<std::int64_t> i64{sv->ToInt64()}) {
std::int64_t i64v{*i64};
int iv = i64v;
if (iv == i64v) {
return iv;
}
}
}
}
context.messages.Say(
"KIND type parameter must be a scalar integer constant"_err_en_US);
return defaultKind;
},
[&](parser::KindParam::Kanji) {
if (kanjiKind >= 0) {
return kanjiKind;
}
context.messages.Say("Kanji not allowed here"_err_en_US);
return defaultKind;
}},
kindParam->u);
}
// Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
template<typename PARSED>
MaybeExpr IntLiteralConstant(ExprAnalyzer &ea, const PARSED &x) {
int kind{ea.Analyze(std::get<std::optional<parser::KindParam>>(x.t),
ea.defaults.defaultIntegerKind)};
auto value{std::get<0>(x.t)}; // std::(u)int64_t
auto result{common::SearchDynamicTypes(
TypeKindVisitor<TypeCategory::Integer, Constant, std::int64_t>{
kind, static_cast<std::int64_t>(value)})};
if (!result.has_value()) {
ea.context.messages.Say("unsupported INTEGER(KIND=%d)"_err_en_US, kind);
}
return result;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
return IntLiteralConstant(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::SignedIntLiteralConstant &x) {
return IntLiteralConstant(*this, x);
}
template<typename TYPE>
Constant<TYPE> ReadRealLiteral(
parser::CharBlock source, FoldingContext &context) {
const char *p{source.begin()};
auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding)};
CHECK(p == source.end());
RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
auto value{valWithFlags.value};
if (context.flushDenormalsToZero) {
value = value.FlushDenormalToZero();
}
return {value};
}
// TODO: can this definition appear in the function belowe?
struct RealTypeVisitor {
using Result = std::optional<Expr<SomeReal>>;
static constexpr std::size_t Types{std::tuple_size_v<RealTypes>};
RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
: kind{k}, literal{lit}, context{ctx} {}
template<std::size_t J> Result Test() {
using Ty = std::tuple_element_t<J, RealTypes>;
if (kind == Ty::kind) {
return {AsCategoryExpr(AsExpr(ReadRealLiteral<Ty>(literal, context)))};
}
return std::nullopt;
}
int kind;
parser::CharBlock literal;
FoldingContext &context;
};
MaybeExpr ExprAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
// Use a local message context around the real literal for better
// provenance on any messages.
parser::ContextualMessages ctxMsgs{x.real.source, context.messages};
FoldingContext localFoldingContext{ctxMsgs, context};
// If a kind parameter appears, it defines the kind of the literal and any
// letter used in an exponent part (e.g., the 'E' in "6.02214E+23")
// should agree. In the absence of an explicit kind parameter, any exponent
// letter determines the kind. Otherwise, defaults apply.
int defaultKind{defaults.defaultRealKind};
const char *end{x.real.source.end()};
std::optional<int> letterKind;
for (const char *p{x.real.source.begin()}; p < end; ++p) {
if (parser::IsLetter(*p)) {
switch (*p) {
case 'e': letterKind = defaults.defaultRealKind; break;
case 'd': letterKind = defaults.defaultDoublePrecisionKind; break;
case 'q': letterKind = defaults.defaultQuadPrecisionKind; break;
default: ctxMsgs.Say("unknown exponent letter '%c'"_err_en_US, *p);
}
break;
}
}
if (letterKind.has_value()) {
defaultKind = *letterKind;
}
auto kind{Analyze(x.kind, defaultKind)};
if (letterKind.has_value() && kind != *letterKind) {
ctxMsgs.Say(
"explicit kind parameter on real constant disagrees with exponent letter"_en_US);
}
auto result{common::SearchDynamicTypes(
RealTypeVisitor{kind, x.real.source, context})};
if (!result.has_value()) {
ctxMsgs.Say("unsupported REAL(KIND=%d)"_err_en_US, kind);
}
return AsMaybeExpr(std::move(result));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::SignedRealLiteralConstant &x) {
if (MaybeExpr result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
auto *realExpr{std::get_if<Expr<SomeReal>>(&result->u)};
CHECK(realExpr != nullptr);
if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
if (sign == parser::Sign::Negative) {
return {AsGenericExpr(-std::move(*realExpr))};
}
}
return result;
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ComplexPart &x) {
return AnalyzeHelper(*this, x.u);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
return AsMaybeExpr(ConstructComplex(
context.messages, Analyze(std::get<0>(z.t)), Analyze(std::get<1>(z.t))));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
int kind{Analyze(std::get<std::optional<parser::KindParam>>(x.t), 1)};
auto value{std::get<std::string>(x.t)};
auto result{common::SearchDynamicTypes(
TypeKindVisitor<TypeCategory::Character, Constant, std::string>{
kind, std::move(value)})};
if (!result.has_value()) {
context.messages.Say("unsupported CHARACTER(KIND=%d)"_err_en_US, kind);
}
return result;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
auto kind{Analyze(std::get<std::optional<parser::KindParam>>(x.t),
defaults.defaultLogicalKind)};
bool value{std::get<bool>(x.t)};
auto result{common::SearchDynamicTypes(
TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
kind, std::move(value)})};
if (!result.has_value()) {
context.messages.Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind);
}
return result;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::HollerithLiteralConstant &x) {
return common::SearchDynamicTypes(
TypeKindVisitor<TypeCategory::Character, Constant, std::string>{
defaults.defaultCharacterKind, x.v});
}
MaybeExpr ExprAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
const char *p{x.v.data()};
std::uint64_t base{16};
switch (*p++) {
case 'b': base = 2; break;
case 'o': base = 8; break;
case 'z': break;
case 'x': break;
default: CRASH_NO_CASE;
}
CHECK(*p == '"');
auto value{BOZLiteralConstant::ReadUnsigned(++p, base)};
if (*p != '"') {
context.messages.Say(
"invalid digit ('%c') in BOZ literal %s"_err_en_US, *p, x.v.data());
return std::nullopt;
}
if (value.overflow) {
context.messages.Say("BOZ literal %s too large"_err_en_US, x.v.data());
return std::nullopt;
}
return {AsGenericExpr(value.value)};
}
template<TypeCategory CATEGORY>
MaybeExpr TypedDataRefHelper(int kind, DataRef &&dataRef) {
return common::SearchDynamicTypes(
TypeKindVisitor<CATEGORY, DataReference, DataRef>{
kind, std::move(dataRef)});
}
static MaybeExpr TypedDataRef(
const semantics::Symbol &symbol, DataRef &&dataRef) {
if (auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
if (details->type().has_value()) {
if (details->type()->category() ==
semantics::DeclTypeSpec::Category::Intrinsic) {
TypeCategory category{details->type()->intrinsicTypeSpec().category()};
int kind{details->type()->intrinsicTypeSpec().kind()};
switch (category) {
case TypeCategory::Integer:
return TypedDataRefHelper<TypeCategory::Integer>(
kind, std::move(dataRef));
case TypeCategory::Real:
return TypedDataRefHelper<TypeCategory::Real>(
kind, std::move(dataRef));
case TypeCategory::Complex:
return TypedDataRefHelper<TypeCategory::Complex>(
kind, std::move(dataRef));
case TypeCategory::Character:
return TypedDataRefHelper<TypeCategory::Character>(
kind, std::move(dataRef));
case TypeCategory::Logical:
return TypedDataRefHelper<TypeCategory::Logical>(
kind, std::move(dataRef));
default: CRASH_NO_CASE;
}
}
}
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Name &n) {
if (n.symbol == nullptr) {
// TODO: convert this to a CHECK later
context.messages.Say(
"TODO: name '%s' is not resolved to an object"_err_en_US,
n.ToString().data());
} else if (n.symbol->attrs().test(semantics::Attr::PARAMETER)) {
context.messages.Say(
"TODO: PARAMETER references not yet implemented"_err_en_US);
// TODO: enumerators, do they have the PARAMETER attribute?
} else {
if (MaybeExpr result{TypedDataRef(*n.symbol, DataRef{*n.symbol})}) {
return result;
}
context.messages.Say("'%s' is not of a supported type and kind"_err_en_US,
n.ToString().data());
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::NamedConstant &n) {
if (MaybeExpr value{Analyze(n.v)}) {
if (std::optional<Constant<SomeType>> folded{value->Fold(context)}) {
return {AsGenericExpr(std::move(*folded))};
}
context.messages.Say(
"'%s' must be a constant"_err_en_US, n.v.ToString().data());
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Substring &ss) {
context.messages.Say("TODO: Substring unimplemented\n"_err_en_US);
return std::nullopt;
}
std::optional<Expr<SubscriptInteger>> ExprAnalyzer::AsSubscript(
MaybeExpr &&expr) {
if (expr.has_value()) {
if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
return {std::move(*ssIntExpr)};
}
return {Expr<SubscriptInteger>{
Convert<SubscriptInteger, TypeCategory::Integer>{
std::move(*intExpr)}}};
} else {
context.messages.Say("subscript expression is not INTEGER"_err_en_US);
}
}
return std::nullopt;
}
std::optional<Expr<SubscriptInteger>> ExprAnalyzer::TripletPart(
const std::optional<parser::Subscript> &s) {
if (s.has_value()) {
return AsSubscript(AnalyzeHelper(*this, *s));
}
return std::nullopt;
}
std::optional<Subscript> ExprAnalyzer::Analyze(
const parser::SectionSubscript &ss) {
return std::visit(
common::visitors{[&](const parser::SubscriptTriplet &t) {
return std::make_optional(
Subscript{Triplet{TripletPart(std::get<0>(t.t)),
TripletPart(std::get<1>(t.t)),
TripletPart(std::get<2>(t.t))}});
},
[&](const auto &s) -> std::optional<Subscript> {
if (auto subscriptExpr{AsSubscript(AnalyzeHelper(*this, s))}) {
return {Subscript{std::move(*subscriptExpr)}};
} else {
return std::nullopt;
}
}},
ss.u);
}
std::vector<Subscript> ExprAnalyzer::Analyze(
const std::list<parser::SectionSubscript> &sss) {
std::vector<Subscript> subscripts;
for (const auto &s : sss) {
if (auto subscript{Analyze(s)}) {
subscripts.emplace_back(std::move(*subscript));
}
}
return subscripts;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ArrayElement &ae) {
std::vector<Subscript> subscripts{Analyze(ae.subscripts)};
if (const parser::Name * name{std::get_if<parser::Name>(&ae.base.u)}) {
if (name->symbol == nullptr) {
// TODO: convert this to a CHECK later
context.messages.Say(
"TODO: name (%s) is not resolved to an object"_err_en_US,
name->ToString().data());
} else {
ArrayRef arrayRef{*name->symbol, std::move(subscripts)};
return TypedDataRef(*name->symbol, DataRef{std::move(arrayRef)});
}
} else if (const auto *component{
std::get_if<common::Indirection<parser::StructureComponent>>(
&ae.base.u)}) {
// pmk continue development here
} else {
CHECK(!"parser::ArrayRef base DataRef is neither Name nor "
"StructureComponent");
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::StructureComponent &sc) {
context.messages.Say("TODO: StructureComponent unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::TypeParamInquiry &tpi) {
context.messages.Say("TODO: TypeParamInquiry unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::CoindexedNamedObject &co) {
context.messages.Say("TODO: CoindexedNamedObject unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::CharLiteralConstantSubstring &) {
context.messages.Say(
"TODO: CharLiteralConstantSubstring unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::ArrayConstructor &) {
context.messages.Say("TODO: ArrayConstructor unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::StructureConstructor &) {
context.messages.Say("TODO: StructureConstructor unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::FunctionReference &) {
context.messages.Say("TODO: FunctionReference unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
if (MaybeExpr operand{AnalyzeHelper(*this, *x.v)}) {
return std::visit(
common::visitors{
[&](BOZLiteralConstant &&boz) {
return operand; // ignore parentheses around typeless
},
[](auto &&catExpr) {
return std::visit(
[](auto &&expr) -> MaybeExpr {
using Ty = ResultType<decltype(expr)>;
if constexpr (common::HasMember<Parentheses<Ty>,
decltype(expr.u)>) {
return {AsGenericExpr(
AsExpr(Parentheses<Ty>{std::move(expr)}))};
}
// TODO: support Parentheses in all Expr specializations
return std::nullopt;
},
std::move(catExpr.u));
}},
std::move(operand->u));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
MaybeExpr value{AnalyzeHelper(*this, *x.v)};
if (value.has_value()) {
std::visit(
common::visitors{
[](const BOZLiteralConstant &) {}, // allow +Z'1', it's harmless
[&](const auto &catExpr) {
TypeCategory cat{ResultType<decltype(catExpr)>::category};
if (cat != TypeCategory::Integer && cat != TypeCategory::Real &&
cat != TypeCategory::Complex) {
context.messages.Say(
"operand of unary + must be of a numeric type"_err_en_US);
}
}},
value->u);
}
return value;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Negate &x) {
if (MaybeExpr operand{AnalyzeHelper(*this, *x.v)}) {
return Negation(context.messages, std::move(operand->u));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::NOT &x) {
if (MaybeExpr operand{AnalyzeHelper(*this, *x.v)}) {
return std::visit(common::visitors{[](Expr<SomeLogical> &&lx) -> MaybeExpr {
return {AsGenericExpr(
LogicalNegation(std::move(lx)))};
},
[=](auto &&) -> MaybeExpr {
// TODO: accept INTEGER operand if not overridden
context.messages.Say(
"Operand of .NOT. must be LOGICAL"_err_en_US);
return std::nullopt;
}},
std::move(operand->u));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::PercentLoc &) {
context.messages.Say("TODO: %LOC unimplemented\n"_err_en_US);
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::DefinedUnary &) {
context.messages.Say("TODO: DefinedUnary unimplemented\n"_err_en_US);
return std::nullopt;
}
// TODO: check defined operators for illegal intrinsic operator cases
template<template<typename> class OPR, typename PARSED>
MaybeExpr BinaryOperationHelper(ExprAnalyzer &ea, const PARSED &x) {
if (auto both{common::AllPresent(AnalyzeHelper(ea, *std::get<0>(x.t)),
AnalyzeHelper(ea, *std::get<1>(x.t)))}) {
return NumericOperation<OPR>(ea.context.messages,
std::move(std::get<0>(*both)), std::move(std::get<1>(*both)));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Power &x) {
return BinaryOperationHelper<Power>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Multiply &x) {
return BinaryOperationHelper<Multiply>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Divide &x) {
return BinaryOperationHelper<Divide>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Add &x) {
return BinaryOperationHelper<Add>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Subtract &x) {
return BinaryOperationHelper<Subtract>(*this, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::ComplexConstructor &x) {
return AsMaybeExpr(ConstructComplex(context.messages,
AnalyzeHelper(*this, *std::get<0>(x.t)),
AnalyzeHelper(*this, *std::get<1>(x.t))));
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::Concat &x) {
if (auto both{common::AllPresent(AnalyzeHelper(*this, *std::get<0>(x.t)),
AnalyzeHelper(*this, *std::get<1>(x.t)))}) {
return std::visit(
common::visitors{
[&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) {
return std::visit(
[&](auto &&cxk, auto &&cyk) -> MaybeExpr {
using Ty = ResultType<decltype(cxk)>;
if constexpr (std::is_same_v<Ty,
ResultType<decltype(cyk)>>) {
return {AsGenericExpr(AsCategoryExpr(AsExpr(
Concat<Ty::kind>{std::move(cxk), std::move(cyk)})))};
} else {
context.messages.Say(
"Operands of // must be the same kind of CHARACTER"_err_en_US);
return std::nullopt;
}
},
std::move(cx.u), std::move(cy.u));
},
[&](auto &&, auto &&) -> MaybeExpr {
context.messages.Say(
"Operands of // must be CHARACTER"_err_en_US);
return std::nullopt;
},
},
std::move(std::get<0>(*both).u), std::move(std::get<1>(*both).u));
}
return std::nullopt;
}
// TODO: check defined operators for illegal intrinsic operator cases
template<typename PARSED>
MaybeExpr RelationHelper(
ExprAnalyzer &ea, RelationalOperator opr, const PARSED &x) {
if (auto both{common::AllPresent(AnalyzeHelper(ea, *std::get<0>(x.t)),
AnalyzeHelper(ea, *std::get<1>(x.t)))}) {
return AsMaybeExpr(Relate(ea.context.messages, opr,
std::move(std::get<0>(*both)), std::move(std::get<1>(*both))));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::LT &x) {
return RelationHelper(*this, RelationalOperator::LT, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::LE &x) {
return RelationHelper(*this, RelationalOperator::LE, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::EQ &x) {
return RelationHelper(*this, RelationalOperator::EQ, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::NE &x) {
return RelationHelper(*this, RelationalOperator::NE, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::GE &x) {
return RelationHelper(*this, RelationalOperator::GE, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::GT &x) {
return RelationHelper(*this, RelationalOperator::GT, x);
}
// TODO: check defined operators for illegal intrinsic operator cases
template<typename PARSED>
MaybeExpr LogicalHelper(
ExprAnalyzer &ea, LogicalOperator opr, const PARSED &x) {
if (auto both{common::AllPresent(AnalyzeHelper(ea, *std::get<0>(x.t)),
AnalyzeHelper(ea, *std::get<1>(x.t)))}) {
return std::visit(
common::visitors{
[=](Expr<SomeLogical> &&lx, Expr<SomeLogical> &&ly) -> MaybeExpr {
return {AsGenericExpr(
BinaryLogicalOperation(opr, std::move(lx), std::move(ly)))};
},
[&](auto &&, auto &&) -> MaybeExpr {
// TODO: extension: INTEGER and typeless operands
// ifort and PGI accept them if not overridden
ea.context.messages.Say(
"operands to LOGICAL operation must be LOGICAL"_err_en_US);
return {};
}},
std::move(std::get<0>(*both).u), std::move(std::get<1>(*both).u));
}
return std::nullopt;
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::AND &x) {
return LogicalHelper(*this, LogicalOperator::And, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::OR &x) {
return LogicalHelper(*this, LogicalOperator::Or, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::EQV &x) {
return LogicalHelper(*this, LogicalOperator::Eqv, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::NEQV &x) {
return LogicalHelper(*this, LogicalOperator::Neqv, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::XOR &x) {
return LogicalHelper(*this, LogicalOperator::Neqv, x);
}
MaybeExpr ExprAnalyzer::Analyze(const parser::Expr::DefinedBinary &) {
context.messages.Say("TODO: DefinedBinary unimplemented\n"_err_en_US);
return std::nullopt;
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
evaluate::MaybeExpr AnalyzeExpr(evaluate::FoldingContext &context,
const IntrinsicTypeDefaultKinds &defaults, const parser::Expr &expr) {
return evaluate::ExprAnalyzer{context, defaults}.Analyze(expr);
}
class Mutator {
public:
Mutator(evaluate::FoldingContext &context,
const IntrinsicTypeDefaultKinds &defaults)
: context_{context}, defaults_{defaults} {}
template<typename A> bool Pre(A &) { return true /* visit children */; }
template<typename A> void Post(A &) {}
bool Pre(parser::Expr &expr) {
if (expr.typedExpr.get() == nullptr) {
if (MaybeExpr checked{AnalyzeExpr(context_, defaults_, expr)}) {
checked->Dump(std::cout << "checked expression: ") << '\n';
expr.typedExpr.reset(
new evaluate::GenericExprWrapper{std::move(*checked)});
} else {
std::cout << "expression analysis failed for this expression: ";
DumpTree(std::cout, expr);
}
}
return false;
}
private:
evaluate::FoldingContext &context_;
const IntrinsicTypeDefaultKinds &defaults_;
};
void AnalyzeExpressions(parser::Program &program,
evaluate::FoldingContext &context,
const IntrinsicTypeDefaultKinds &defaults) {
Mutator mutator{context, defaults};
parser::Walk(program, mutator);
}
} // namespace Fortran::semantics