Find a file
Andrew Brown 3696a789d2 [WebAssembly] Use localexec as default TLS model for non-Emscripten targets
Only Emscripten supports dynamic linking with threads. To use
thread-local storage for other targets, this change defaults to the
`localexec` model.

Differential Revision: https://reviews.llvm.org/D130053
2022-07-25 13:25:46 -07:00
.github [github] format and refactor GitHub workflows 2022-06-11 11:31:21 +04:30
bolt [BOLT] Handle broken .dynsym in stripped binaries 2022-07-22 11:24:09 -07:00
clang [Passes] add a tail-call-elim pass near the end of the opt pipeline 2022-07-25 15:25:47 -04:00
clang-tools-extra [pseudo] Eliminate multiple-specified-types ambiguities using guards 2022-07-25 12:57:07 +02:00
cmake
compiler-rt tsan: prevent pathological slowdown for spurious races 2022-07-25 10:40:11 +02:00
cross-project-tests Pretty printer test fixes 2022-07-12 19:29:38 +00:00
flang [flang] Allow restricted specific intrinsic functions as implicitly-interfaced procedure pointer targets 2022-07-25 12:19:49 -07:00
libc [libc] Add dirent.h functions opendir, readdir, closedir and dirfd. 2022-07-25 20:23:25 +00:00
libclc Remove references to old mailing lists that have moved to discourse. Replace with links to discourse. 2022-07-22 09:59:03 -07:00
libcxx [libc++] Fix algorithms which use reverse_iterator 2022-07-25 18:35:20 +02:00
libcxxabi Remove references to old mailing lists that have moved to discourse. Replace with links to discourse. 2022-07-22 09:59:03 -07:00
libunwind [libunwind][SystemZ] Use process_vm_readv to avoid potential segfaults 2022-07-18 16:54:48 +02:00
lld Revert "[lld-macho] Implement -load_hidden" 2022-07-25 21:11:19 +02:00
lldb [lldb] [gdb-remote] Refactor killing process and move it to client 2022-07-25 18:43:32 +02:00
llvm [WebAssembly] Use localexec as default TLS model for non-Emscripten targets 2022-07-25 13:25:46 -07:00
llvm-libgcc
mlir [Flang][OpenMP] Initial support for integer reduction in worksharing-loop 2022-07-25 18:47:07 +00:00
openmp [OpenMP] Remove noinline attributes in the device runtime 2022-07-25 15:44:50 -04:00
polly Use any_of (NFC) 2022-07-22 01:05:17 -07:00
pstl
runtimes [runtimes] Add pstl to the list of default runtimes to fix the build 2022-07-22 22:57:37 +02:00
third-party
utils [mlir] Transform dialect: separate dependent and generated dialects 2022-07-25 09:59:53 +00:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore
.mailmap
CONTRIBUTING.md
README.md
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.