llvm/flang/lib/evaluate/common.h
2019-01-07 10:55:09 -08:00

206 lines
6.6 KiB
C++

// Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_EVALUATE_COMMON_H_
#define FORTRAN_EVALUATE_COMMON_H_
#include "../common/enum-set.h"
#include "../common/fortran.h"
#include "../common/idioms.h"
#include "../common/indirection.h"
#include "../parser/char-block.h"
#include "../parser/message.h"
#include <cinttypes>
namespace Fortran::semantics {
class DerivedTypeSpec;
}
namespace Fortran::semantics {
class DerivedTypeSpec;
}
namespace Fortran::evaluate {
using common::RelationalOperator;
// Integers are always ordered; reals may not be.
ENUM_CLASS(Ordering, Less, Equal, Greater)
ENUM_CLASS(Relation, Less, Equal, Greater, Unordered)
template<typename A> static constexpr Ordering Compare(const A &x, const A &y) {
if (x < y) {
return Ordering::Less;
} else if (x > y) {
return Ordering::Greater;
} else {
return Ordering::Equal;
}
}
static constexpr Ordering Reverse(Ordering ordering) {
if (ordering == Ordering::Less) {
return Ordering::Greater;
} else if (ordering == Ordering::Greater) {
return Ordering::Less;
} else {
return Ordering::Equal;
}
}
static constexpr Relation RelationFromOrdering(Ordering ordering) {
if (ordering == Ordering::Less) {
return Relation::Less;
} else if (ordering == Ordering::Greater) {
return Relation::Greater;
} else {
return Relation::Equal;
}
}
static constexpr Relation Reverse(Relation relation) {
if (relation == Relation::Less) {
return Relation::Greater;
} else if (relation == Relation::Greater) {
return Relation::Less;
} else {
return relation;
}
}
static constexpr bool Satisfies(RelationalOperator op, Ordering order) {
switch (order) {
case Ordering::Less:
return op == RelationalOperator::LT || op == RelationalOperator::LE ||
op == RelationalOperator::NE;
case Ordering::Equal:
return op == RelationalOperator::LE || op == RelationalOperator::EQ ||
op == RelationalOperator::GE;
case Ordering::Greater:
return op == RelationalOperator::NE || op == RelationalOperator::GE ||
op == RelationalOperator::GT;
}
return false; // silence g++ warning
}
static constexpr bool Satisfies(RelationalOperator op, Relation relation) {
switch (relation) {
case Relation::Less: return Satisfies(op, Ordering::Less);
case Relation::Equal: return Satisfies(op, Ordering::Equal);
case Relation::Greater: return Satisfies(op, Ordering::Greater);
case Relation::Unordered: return false;
}
return false; // silence g++ warning
}
ENUM_CLASS(
RealFlag, Overflow, DivideByZero, InvalidArgument, Underflow, Inexact)
using RealFlags = common::EnumSet<RealFlag, RealFlag_enumSize>;
template<typename A> struct ValueWithRealFlags {
A AccumulateFlags(RealFlags &f) {
f |= flags;
return value;
}
A value;
RealFlags flags;
};
ENUM_CLASS(Rounding, TiesToEven, ToZero, Down, Up, TiesAwayFromZero)
static constexpr Rounding defaultRounding{Rounding::TiesToEven};
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
constexpr bool IsHostLittleEndian{false};
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
constexpr bool IsHostLittleEndian{true};
#else
#error host endianness is not known
#endif
// HostUnsignedInt<BITS> finds the smallest native unsigned integer type
// whose size is >= BITS.
template<bool LE8, bool LE16, bool LE32, bool LE64> struct SmallestUInt {};
template<> struct SmallestUInt<true, true, true, true> {
using type = std::uint8_t;
};
template<> struct SmallestUInt<false, true, true, true> {
using type = std::uint16_t;
};
template<> struct SmallestUInt<false, false, true, true> {
using type = std::uint32_t;
};
template<> struct SmallestUInt<false, false, false, true> {
using type = std::uint64_t;
};
template<int BITS>
using HostUnsignedInt =
typename SmallestUInt<BITS <= 8, BITS <= 16, BITS <= 32, BITS <= 64>::type;
// Many classes in this library follow a common paradigm.
// - There is no default constructor (Class() {}), usually to prevent the
// need for std::monostate as a default constituent in a std::variant<>.
// - There are full copy and move semantics for construction and assignment.
// - Discriminated unions have a std::variant<> member "u" and support
// explicit copy and move constructors as well as comparison for equality.
#define DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(t) \
t(const t &) = default; \
t(t &&) = default; \
t &operator=(const t &) = default; \
t &operator=(t &&) = default;
#define CLASS_BOILERPLATE(t) \
t() = delete; \
DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(t)
#define EVALUATE_UNION_CLASS_BOILERPLATE(t) \
CLASS_BOILERPLATE(t) \
template<typename _A> explicit t(const _A &x) : u{x} {} \
template<typename _A> \
explicit t(std::enable_if_t<!std::is_reference_v<_A>, _A> &&x) \
: u(std::move(x)) {} \
bool operator==(const t &that) const { return u == that.u; }
// Force availability of copy construction and assignment
template<typename A> using CopyableIndirection = common::Indirection<A, true>;
// Forward definition of Expr<> so that it can be indirectly used in its own
// definition
template<typename A> class Expr;
struct FoldingContext {
explicit FoldingContext(const parser::ContextualMessages &m,
Rounding round = defaultRounding, bool flush = false)
: messages{m}, rounding{round}, flushDenormalsToZero{flush} {}
FoldingContext(const FoldingContext &that)
: messages{that.messages}, rounding{that.rounding},
flushDenormalsToZero{that.flushDenormalsToZero}, pdtInstance{
that.pdtInstance} {}
FoldingContext(
const FoldingContext &that, const parser::ContextualMessages &m)
: messages{m}, rounding{that.rounding},
flushDenormalsToZero{that.flushDenormalsToZero}, pdtInstance{
that.pdtInstance} {}
parser::ContextualMessages messages;
Rounding rounding{defaultRounding};
bool flushDenormalsToZero{false};
bool bigEndian{false};
const semantics::DerivedTypeSpec *pdtInstance{nullptr};
};
void RealFlagWarnings(FoldingContext &, const RealFlags &, const char *op);
}
#endif // FORTRAN_EVALUATE_COMMON_H_