Find a file
Jean Perier 2c8cb9acb5 [flang] Handle common block with different sizes in same file
Semantics is not preventing a named common block to appear with
different size in a same file (named common block should always have
the same storage size (see Fortran 2018 8.10.2.5), but it is a common
extension to accept different sizes).

Lowering was not coping with this well, since it just use the first
common block appearance, starting with BLOCK DATAs to define common
blocks (this also was an issue with the blank common block, which can
legally appear with different size in different scoping units).

Semantics is also not preventing named common from being initialized
outside of a BLOCK DATA, and lowering was dealing badly with this,
since it only gave an initial value to common blocks Globals if the
first common block appearance, starting with BLOCK DATAs had an initial
value.

Semantics is also allowing blank common to be initialized, while
lowering was assuming this would never happen, and was never creating
an initial value for it.

Lastly, semantics was not complaining if a COMMON block was initialized
in several scoping unit in a same file, while lowering can only generate
one of these initial value.

To fix this, add a structure to keep track of COMMON block properties
(biggest size, and initial value if any) at the Program level. Once the
size of a common block appearance is know, the common block appearance
is checked against this information. It allows semantics to emit an error
in case of multiple initialization in different scopes of a same common
block, and to warn in case named common blocks appears with different
sizes. Lastly, this allows lowering to use the Program level info about
common blocks to emit the right GlobalOp for a Common Block, regardless
of the COMMON Block appearances order: It emits a GlobalOp with the
biggest size, whose lowest bytes are initialized with the initial value
if any is given in a scope where the common block appears.

Lowering is updated to go emit the common blocks before anything else so
that the related GlobalOps are available when lowering the scopes where
common block appear. It is also updated to not assume that blank common
are never initialized.

Differential Revision: https://reviews.llvm.org/D124622
2022-04-29 14:52:47 +02:00
.github Disable Mailgun click tracking 2022-02-24 19:03:43 +03:00
bolt [BOLT] Fix r_aarch64_prelxx test 2022-04-28 23:52:24 +03:00
clang [include-cleaner] Include-cleaner library structure, and simplistic AST walking. 2022-04-29 11:04:11 +02:00
clang-tools-extra [include-cleaner] Add missing deps from unittests 2022-04-29 13:08:28 +02:00
cmake [doc] [cmake] Fix a typo in examples for the cmake directory docs. NFC. 2022-04-22 17:28:24 +03:00
compiler-rt [asan] Enable detect_stack_use_after_return=1 by default on Linux 2022-04-28 21:08:16 -07:00
cross-project-tests Speculatively fix build bots 2022-04-20 11:48:06 -04:00
flang [flang] Handle common block with different sizes in same file 2022-04-29 14:52:47 +02:00
libc [libc] Support 32-bit ARM platform tests 2022-04-28 12:00:28 -07:00
libclc
libcxx [msan][libcxx] Enable -fsanitize-memory-param-retval 2022-04-28 19:12:41 -07:00
libcxxabi Disable test for Android/Bionic. 2022-04-29 09:46:43 +02:00
libunwind [libunwind][AArch64] Fix _Unwind_ForcedUnwind via sigreturn. 2022-04-28 18:41:38 +02:00
lld [ELF][test] Improve data-segment-relro.test 2022-04-28 22:29:39 -07:00
lldb [lldb] Allow EXE or exe in toolchain-msvc.test 2022-04-29 12:22:33 +00:00
llvm [InstCombine] Remove memset of undef value 2022-04-29 14:51:18 +02:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir [mlir][linalg][transform] Add TileOp to transform dialect 2022-04-29 21:35:31 +09:00
openmp [Libomptarget] Use entry name for global info 2022-04-25 09:56:43 -04:00
polly [Passes] Remove legacy LoopUnswitch pass. 2022-04-29 10:30:49 +01:00
pstl
runtimes [runtimes] [CMake] Rename a cmake variable missed in b3df14b6c9 2022-04-25 11:22:38 +03:00
third-party
utils [mlir][linalg][transform] Add TileOp to transform dialect 2022-04-29 21:35:31 +09:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.