Find a file
Petr Hosek 167906c109 [BareMetal] Ensure that sysroot always comes after library paths
This addresses an issue introduced in D91559. We would invoke the
compiler with -Lpath/to/lib --sysroot=path/to/sysroot where both
locations contain libraries with the same name, but we expect linker
to pick up the library in path/to/lib since that version is more
specialized. This was the case before D91559 where the sysroot path
would be ignored, but after that change linker would now pick up the
library from the sysroot which resulted in unexpected behavior.

The sysroot path should always come after any user provided library
paths, followed by compiler runtime paths. We want for libraries in user
provided library paths to always take precedence over sysroot libraries.
This matches the behavior of other toolchains used with other targets.

Differential Revision: https://reviews.llvm.org/D102049
2021-05-07 14:42:02 -07:00
.github
clang [BareMetal] Ensure that sysroot always comes after library paths 2021-05-07 14:42:02 -07:00
clang-tools-extra new altera ID dependent backward branch check 2021-05-06 17:01:39 -04:00
compiler-rt [libFuzzer] Fix stack-overflow-with-asan.test. 2021-05-07 09:18:21 -07:00
debuginfo-tests [dexter] Update failing regression test 2021-04-26 16:41:35 +01:00
flang [flang] Implement NORM2 in the runtime 2021-05-07 13:23:21 -07:00
libc [libc] Normalize LIBC_TARGET_MACHINE 2021-05-05 15:52:42 +00:00
libclc Support: Stop using F_{None,Text,Append} compatibility synonyms, NFC 2021-04-30 11:00:03 -07:00
libcxx [libc++][ci] Run longer CI jobs first 2021-05-07 13:57:07 -04:00
libcxxabi [libc++] Support per-target __config_site in per-target runtime build 2021-04-28 14:27:16 -07:00
libunwind [libunwind] NFC: Use macros to accommodate differences in representation of PowerPC assemblers 2021-05-06 14:33:38 -04:00
lld [lld/mac] Write every weak symbol only once in the output 2021-05-07 17:11:40 -04:00
lldb When SendContinuePacketAndWaitForResponse returns eStateInvalid, don't fetch more packets. 2021-05-06 14:11:42 -07:00
llvm [LV] Remove reference of PHI from comment, they are not recorded (NFC). 2021-05-07 21:34:23 +01:00
mlir [mlir] Missed clang-format 2021-05-07 13:57:34 -07:00
openmp An attempt to abandon omptarget out-of-tree builds. 2021-05-07 12:43:50 -07:00
parallel-libs
polly Internalize some cl::opt global variables or move them under namespace llvm 2021-05-07 11:15:43 -07:00
pstl Rename top-level LICENSE.txt files to LICENSE.TXT 2021-03-10 21:26:24 -08:00
runtimes [runtimes] Add the libc project to the list of runtimes. 2021-03-23 17:33:03 +00:00
utils/arcanist [NFC] Give better diagnose on clang-format not found error 2021-05-04 09:22:06 +05:30
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy
.git-blame-ignore-revs
.gitignore
CONTRIBUTING.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.