[NFC][CVP] Add tests for SDiv/SRem narrowing

This commit is contained in:
Roman Lebedev 2020-09-22 17:33:39 +03:00
parent 4977eadee5
commit cb10d5d714
No known key found for this signature in database
GPG key ID: 083C3EBB4A1689E0
2 changed files with 766 additions and 0 deletions

View file

@ -254,3 +254,403 @@ end:
%div = sdiv i32 %x, %y
ret i32 %div
}
; Ok, but what about narrowing sdiv in general?
; If both operands are i15, it's uncontroversial - we can truncate to i16
define i64 @test11_i15_i15(i64 %x, i64 %y) {
; CHECK-LABEL: @test11_i15_i15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; But if operands are i16, we can only truncate to i32, because we can't
; rule out UB of i16 INT_MIN s/ i16 -1
define i64 @test12_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test12_i16_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe.
define i64 @test13_i16_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test13_i16_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; And likewise, if we know that if the divident is never i16 INT_MIN,
; we can truncate to i16.
define i64 @test14_i16safe_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test14_i16safe_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; Of course, both of the conditions can happen at once.
define i64 @test15_i16safe_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test15_i16safe_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; We at most truncate to i8
define i64 @test16_i4_i4(i64 %x, i64 %y) {
; CHECK-LABEL: @test16_i4_i4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 3
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -4
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 3
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -4
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; And we round up to the powers of two
define i64 @test17_i9_i9(i64 %x, i64 %y) {
; CHECK-LABEL: @test17_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; Don't widen the operation to the next power of two if it wasn't a power of two.
define i9 @test18_i9_i9(i9 %x, i9 %y) {
; CHECK-LABEL: @test18_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i9 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i9 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i9 [[X]], [[Y]]
; CHECK-NEXT: ret i9 [[DIV]]
;
entry:
%c0 = icmp sle i9 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i9 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i9 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i9 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i9 %x, %y
ret i9 %div
}
define i10 @test19_i10_i10(i10 %x, i10 %y) {
; CHECK-LABEL: @test19_i10_i10(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i10 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i10 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i10 [[X]], [[Y]]
; CHECK-NEXT: ret i10 [[DIV]]
;
entry:
%c0 = icmp sle i10 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i10 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i10 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i10 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i10 %x, %y
ret i10 %div
}
; Note that we need to take the maximal bitwidth, in which both of the operands are representable!
define i64 @test20_i16_i18(i64 %x, i64 %y) {
; CHECK-LABEL: @test20_i16_i18(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 65535
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -65536
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
define i64 @test21_i18_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test21_i18_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 65535
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -65536
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv i64 %x, %y
ret i64 %div
}
; Ensure that we preserve exact-ness
define i64 @test22_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test22_i16_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = sdiv exact i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = sdiv exact i64 %x, %y
ret i64 %div
}

View file

@ -167,3 +167,369 @@ end:
%rem = srem i16 %x, %y
ret i16 %rem
}
; Ok, but what about narrowing srem in general?
; If both operands are i15, it's uncontroversial - we can truncate to i16
define i64 @test11_i15_i15(i64 %x, i64 %y) {
; CHECK-LABEL: @test11_i15_i15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; But if operands are i16, we can only truncate to i32, because we can't
; rule out UB of i16 INT_MIN s/ i16 -1
define i64 @test12_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test12_i16_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe.
define i64 @test13_i16_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test13_i16_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; And likewise, if we know that if the divident is never i16 INT_MIN,
; we can truncate to i16.
define i64 @test14_i16safe_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test14_i16safe_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; Of course, both of the conditions can happen at once.
define i64 @test15_i16safe_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test15_i16safe_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; We at most truncate to i8
define i64 @test16_i4_i4(i64 %x, i64 %y) {
; CHECK-LABEL: @test16_i4_i4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 3
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -4
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 3
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -4
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; And we round up to the powers of two
define i64 @test17_i9_i9(i64 %x, i64 %y) {
; CHECK-LABEL: @test17_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
; Don't widen the operation to the next power of two if it wasn't a power of two.
define i9 @test18_i9_i9(i9 %x, i9 %y) {
; CHECK-LABEL: @test18_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i9 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i9 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i9 [[X]], [[Y]]
; CHECK-NEXT: ret i9 [[DIV]]
;
entry:
%c0 = icmp sle i9 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i9 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i9 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i9 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i9 %x, %y
ret i9 %div
}
define i10 @test19_i10_i10(i10 %x, i10 %y) {
; CHECK-LABEL: @test19_i10_i10(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i10 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i10 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i10 [[X]], [[Y]]
; CHECK-NEXT: ret i10 [[DIV]]
;
entry:
%c0 = icmp sle i10 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i10 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i10 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i10 %y, -256
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i10 %x, %y
ret i10 %div
}
; Note that we need to take the maximal bitwidth, in which both of the operands are representable!
define i64 @test20_i16_i18(i64 %x, i64 %y) {
; CHECK-LABEL: @test20_i16_i18(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 65535
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -65536
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}
define i64 @test21_i18_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test21_i18_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: br label [[END:%.*]]
; CHECK: end:
; CHECK-NEXT: [[DIV:%.*]] = srem i64 [[X]], [[Y]]
; CHECK-NEXT: ret i64 [[DIV]]
;
entry:
%c0 = icmp sle i64 %x, 65535
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -65536
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
br label %end
end:
%div = srem i64 %x, %y
ret i64 %div
}