[mlir][spirv] Add mlir-vulkan-runner

Add an initial version of mlir-vulkan-runner execution driver.
A command line utility that executes a MLIR file on the Vulkan by
translating MLIR GPU module to SPIR-V and host part to LLVM IR before
JIT-compiling and executing the latter.

Differential Revision: https://reviews.llvm.org/D72696
This commit is contained in:
Denis Khalikov 2020-02-19 09:11:22 -05:00 committed by Lei Zhang
parent bb61021a8f
commit 896ee361a6
13 changed files with 1265 additions and 24 deletions

View file

@ -48,6 +48,7 @@ endif()
add_definitions(-DMLIR_CUDA_CONVERSIONS_ENABLED=${MLIR_CUDA_CONVERSIONS_ENABLED})
set(MLIR_CUDA_RUNNER_ENABLED 0 CACHE BOOL "Enable building the mlir CUDA runner")
set(MLIR_VULKAN_RUNNER_ENABLED 0 CACHE BOOL "Enable building the mlir Vulkan runner")
include_directories( "include")
include_directories( ${MLIR_INCLUDE_DIR})

View file

@ -27,7 +27,7 @@
#include "mlir/IR/StandardTypes.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/ADT/SmallString.h"
using namespace mlir;
@ -80,7 +80,7 @@ private:
/// populates the given `numWorkGroups`.
LogicalResult createNumWorkGroups(Location loc, OpBuilder &builder,
mlir::gpu::LaunchFuncOp launchOp,
SmallVector<Value, 3> &numWorkGroups);
SmallVectorImpl<Value> &numWorkGroups);
/// Declares all needed runtime functions.
void declareVulkanFunctions(Location loc);
@ -153,17 +153,15 @@ void GpuLaunchFuncToVulkanCalssPass::declareVulkanFunctions(Location loc) {
Value GpuLaunchFuncToVulkanCalssPass::createEntryPointNameConstant(
StringRef name, Location loc, OpBuilder &builder) {
std::vector<char> shaderName(name.begin(), name.end());
SmallString<16> shaderName(name.begin(), name.end());
// Append `\0` to follow C style string given that LLVM::createGlobalString()
// won't handle this directly for us.
shaderName.push_back('\0');
std::string entryPointGlobalName =
std::string(llvm::formatv("{0}_spv_entry_point_name", name));
return LLVM::createGlobalString(
loc, builder, entryPointGlobalName,
StringRef(shaderName.data(), shaderName.size()), LLVM::Linkage::Internal,
getLLVMDialect());
std::string entryPointGlobalName = (name + "_spv_entry_point_name").str();
return LLVM::createGlobalString(loc, builder, entryPointGlobalName,
shaderName, LLVM::Linkage::Internal,
getLLVMDialect());
}
LogicalResult GpuLaunchFuncToVulkanCalssPass::createBinaryShader(
@ -171,14 +169,12 @@ LogicalResult GpuLaunchFuncToVulkanCalssPass::createBinaryShader(
bool done = false;
SmallVector<uint32_t, 0> binary;
for (auto spirvModule : module.getOps<spirv::ModuleOp>()) {
if (done) {
spirvModule.emitError("should only contain one 'spv.module' op");
return failure();
}
if (done)
return spirvModule.emitError("should only contain one 'spv.module' op");
done = true;
if (failed(spirv::serialize(spirvModule, binary))) {
if (failed(spirv::serialize(spirvModule, binary)))
return failure();
}
}
binaryShader.resize(binary.size() * sizeof(uint32_t));
@ -189,14 +185,13 @@ LogicalResult GpuLaunchFuncToVulkanCalssPass::createBinaryShader(
LogicalResult GpuLaunchFuncToVulkanCalssPass::createNumWorkGroups(
Location loc, OpBuilder &builder, mlir::gpu::LaunchFuncOp launchOp,
SmallVector<Value, 3> &numWorkGroups) {
SmallVectorImpl<Value> &numWorkGroups) {
for (auto index : llvm::seq(0, 3)) {
auto numWorkGroupDimConstant = dyn_cast_or_null<ConstantOp>(
launchOp.getOperand(index).getDefiningOp());
if (!numWorkGroupDimConstant) {
if (!numWorkGroupDimConstant)
return failure();
}
auto numWorkGroupDimValue =
numWorkGroupDimConstant.getValue().cast<IntegerAttr>().getInt();
@ -207,7 +202,6 @@ LogicalResult GpuLaunchFuncToVulkanCalssPass::createNumWorkGroups(
return success();
}
// Translates gpu launch op to the sequence of Vulkan runtime calls.
void GpuLaunchFuncToVulkanCalssPass::translateGpuLaunchCalls(
mlir::gpu::LaunchFuncOp launchOp) {
ModuleOp module = getModule();
@ -217,9 +211,8 @@ void GpuLaunchFuncToVulkanCalssPass::translateGpuLaunchCalls(
// Serialize `spirv::Module` into binary form.
std::vector<char> binary;
if (failed(
GpuLaunchFuncToVulkanCalssPass::createBinaryShader(module, binary))) {
GpuLaunchFuncToVulkanCalssPass::createBinaryShader(module, binary)))
return signalPassFailure();
}
// Create LLVM global with SPIR-V binary data, so we can pass a pointer with
// that data to runtime call.
@ -246,9 +239,8 @@ void GpuLaunchFuncToVulkanCalssPass::translateGpuLaunchCalls(
// Create number of local workgroup for each dimension.
SmallVector<Value, 3> numWorkGroups;
if (failed(createNumWorkGroups(loc, builder, launchOp, numWorkGroups))) {
if (failed(createNumWorkGroups(loc, builder, launchOp, numWorkGroups)))
return signalPassFailure();
}
// Create call `setNumWorkGroups` runtime function with the given numbers of
// local workgroup.

View file

@ -15,6 +15,7 @@ set(MLIR_DIALECT_LINALG_INTEGRATION_TEST_LIB_DIR ${CMAKE_LIBRARY_OUTPUT_DIRECTOR
# Passed to lit.site.cfg.py.in to set up the path where to find the libraries
# for the mlir cuda runner tests.
set(MLIR_CUDA_WRAPPER_LIBRARY_DIR ${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
set(MLIR_VULKAN_WRAPPER_LIBRARY_DIR ${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
configure_lit_site_cfg(
${CMAKE_CURRENT_SOURCE_DIR}/lit.site.cfg.py.in
@ -61,6 +62,12 @@ if(MLIR_CUDA_RUNNER_ENABLED)
)
endif()
if(MLIR_VULKAN_RUNNER_ENABLED)
list(APPEND MLIR_TEST_DEPENDS
mlir-vulkan-runner
)
endif()
add_lit_testsuite(check-mlir "Running the MLIR regression tests"
${CMAKE_CURRENT_BINARY_DIR}
DEPENDS ${MLIR_TEST_DEPENDS}

View file

@ -67,7 +67,8 @@ tools.extend([
ToolSubst('toy-ch4', unresolved='ignore'),
ToolSubst('toy-ch5', unresolved='ignore'),
ToolSubst('%linalg_test_lib_dir', config.linalg_test_lib_dir, unresolved='ignore'),
ToolSubst('%cuda_wrapper_library_dir', config.cuda_wrapper_library_dir, unresolved='ignore')
ToolSubst('%cuda_wrapper_library_dir', config.cuda_wrapper_library_dir, unresolved='ignore'),
ToolSubst('%vulkan_wrapper_library_dir', config.vulkan_wrapper_library_dir, unresolved='ignore')
])
llvm_config.add_tool_substitutions(tools, tool_dirs)

View file

@ -36,6 +36,8 @@ config.build_examples = @LLVM_BUILD_EXAMPLES@
config.run_cuda_tests = @MLIR_CUDA_CONVERSIONS_ENABLED@
config.cuda_wrapper_library_dir = "@MLIR_CUDA_WRAPPER_LIBRARY_DIR@"
config.enable_cuda_runner = @MLIR_CUDA_RUNNER_ENABLED@
config.vulkan_wrapper_library_dir = "@MLIR_VULKAN_WRAPPER_LIBRARY_DIR@"
config.enable_vulkan_runner = @MLIR_VULKAN_RUNNER_ENABLED@
# Support substitution of the tools_dir with user parameters. This is
# used when we can't determine the tool dir at configuration time.

View file

@ -0,0 +1,45 @@
// RUN: mlir-vulkan-runner %s --shared-libs=%vulkan_wrapper_library_dir/libvulkan-runtime-wrappers%shlibext,%linalg_test_lib_dir/libmlir_runner_utils%shlibext --entry-point-result=void | FileCheck %s
// CHECK: [3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3]
module attributes {gpu.container_module} {
gpu.module @kernels {
gpu.func @kernel_add(%arg0 : memref<8xf32>, %arg1 : memref<8xf32>, %arg2 : memref<8xf32>)
attributes {gpu.kernel, spv.entry_point_abi = {local_size = dense<[1, 1, 1]>: vector<3xi32>}} {
%0 = "gpu.block_id"() {dimension = "x"} : () -> index
%1 = load %arg0[%0] : memref<8xf32>
%2 = load %arg1[%0] : memref<8xf32>
%3 = addf %1, %2 : f32
store %3, %arg2[%0] : memref<8xf32>
gpu.return
}
}
func @main() {
%arg0 = alloc() : memref<8xf32>
%arg1 = alloc() : memref<8xf32>
%arg2 = alloc() : memref<8xf32>
%0 = constant 0 : i32
%1 = constant 1 : i32
%2 = constant 2 : i32
%value0 = constant 0.0 : f32
%value1 = constant 1.1 : f32
%value2 = constant 2.2 : f32
%arg3 = memref_cast %arg0 : memref<8xf32> to memref<?xf32>
%arg4 = memref_cast %arg1 : memref<8xf32> to memref<?xf32>
%arg5 = memref_cast %arg2 : memref<8xf32> to memref<?xf32>
call @setResourceData(%0, %0, %arg3, %value1) : (i32, i32, memref<?xf32>, f32) -> ()
call @setResourceData(%0, %1, %arg4, %value2) : (i32, i32, memref<?xf32>, f32) -> ()
call @setResourceData(%0, %2, %arg5, %value0) : (i32, i32, memref<?xf32>, f32) -> ()
%cst1 = constant 1 : index
%cst8 = constant 8 : index
"gpu.launch_func"(%cst8, %cst1, %cst1, %cst1, %cst1, %cst1, %arg0, %arg1, %arg2) { kernel = "kernel_add", kernel_module = @kernels }
: (index, index, index, index, index, index, memref<8xf32>, memref<8xf32>, memref<8xf32>) -> ()
%arg6 = memref_cast %arg5 : memref<?xf32> to memref<*xf32>
call @print_memref_f32(%arg6) : (memref<*xf32>) -> ()
return
}
func @setResourceData(%0 : i32, %1 : i32, %2 : memref<?xf32>, %4 : f32)
func @print_memref_f32(%ptr : memref<*xf32>)
}

View file

@ -0,0 +1,2 @@
if not config.enable_vulkan_runner:
config.unsupported = True

View file

@ -3,3 +3,4 @@ add_subdirectory(mlir-cpu-runner)
add_subdirectory(mlir-opt)
add_subdirectory(mlir-tblgen)
add_subdirectory(mlir-translate)
add_subdirectory(mlir-vulkan-runner)

View file

@ -0,0 +1,105 @@
set(LLVM_OPTIONAL_SOURCES
mlir-vulkan-runner.cpp
vulkan-runtime-wrappers.cpp
VulkanRuntime.cpp
VulkanRuntime.h
)
if (MLIR_VULKAN_RUNNER_ENABLED)
message(STATUS "Building the Vulkan runner")
# At first try "FindVulkan" from:
# https://cmake.org/cmake/help/v3.7/module/FindVulkan.html
if (NOT CMAKE_VERSION VERSION_LESS 3.7.0)
find_package(Vulkan)
endif()
# If Vulkan is not found try a path specified by VULKAN_SDK.
if (NOT Vulkan_FOUND)
if ("$ENV{VULKAN_SDK}" STREQUAL "")
message(FATAL_ERROR "Please use at least CMAKE 3.7.0 or provide "
"VULKAN_SDK path as an environment variable")
endif()
find_library(Vulkan_LIBRARY vulkan HINTS "$ENV{VULKAN_SDK}/lib" REQUIRED)
if (Vulkan_LIBRARY)
set(Vulkan_FOUND ON)
set(Vulkan_INCLUDE_DIR "$ENV{VULKAN_SDK}/include")
message(STATUS "Found Vulkan: " ${Vulkan_LIBRARY})
endif()
endif()
if (NOT Vulkan_FOUND)
message(FATAL_ERROR "Cannot find Vulkan library")
endif()
add_llvm_library(vulkan-runtime-wrappers SHARED
vulkan-runtime-wrappers.cpp
VulkanRuntime.cpp
)
target_include_directories(vulkan-runtime-wrappers
PRIVATE ${Vulkan_INCLUDE_DIR}
LLVMSupport
)
target_link_libraries(vulkan-runtime-wrappers
LLVMSupport
MLIRSPIRVSerialization
LLVMCore
LLVMSupport
${Vulkan_LIBRARY}
)
set(LIBS
LLVMCore
LLVMSupport
MLIRJitRunner
MLIRAffineOps
MLIRAnalysis
MLIREDSC
MLIRExecutionEngine
MLIRFxpMathOps
MLIRGPU
MLIRGPUtoCUDATransforms
MLIRGPUtoNVVMTransforms
MLIRGPUtoSPIRVTransforms
MLIRGPUtoVulkanTransforms
MLIRIR
MLIRLLVMIR
MLIRLinalgOps
MLIRLoopToStandard
MLIROpenMP
MLIRParser
MLIRQuantOps
MLIRROCDLIR
MLIRSPIRV
MLIRSPIRVTransforms
MLIRStandardOps
MLIRStandardToLLVM
MLIRSupport
MLIRTargetLLVMIR
MLIRTransforms
MLIRTranslation
${Vulkan_LIBRARY}
)
# Manually expand the target library, since our MLIR libraries
# aren't plugged into the LLVM dependency tracking. If we don't
# do this then we can't insert the CodeGen library after ourselves
llvm_expand_pseudo_components(TARGET_LIBS AllTargetsCodeGens)
# Prepend LLVM in front of every target, this is how the library
# are named with CMake
SET(targets_to_link)
FOREACH(t ${TARGET_LIBS})
LIST(APPEND targets_to_link "LLVM${t}")
ENDFOREACH(t)
add_llvm_tool(mlir-vulkan-runner
mlir-vulkan-runner.cpp
)
add_dependencies(mlir-vulkan-runner vulkan-runtime-wrappers)
llvm_update_compile_flags(mlir-vulkan-runner)
target_link_libraries(mlir-vulkan-runner PRIVATE ${FULL_LINK_LIBS} ${LIBS})
endif()

View file

@ -0,0 +1,717 @@
//===- VulkanRuntime.cpp - MLIR Vulkan runtime ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a library for running a module on a Vulkan device.
// Implements a Vulkan runtime.
//
//===----------------------------------------------------------------------===//
#include "VulkanRuntime.h"
using namespace mlir;
void VulkanRuntime::setNumWorkGroups(const NumWorkGroups &numberWorkGroups) {
numWorkGroups = numberWorkGroups;
}
void VulkanRuntime::setResourceStorageClassBindingMap(
const ResourceStorageClassBindingMap &stClassData) {
resourceStorageClassData = stClassData;
}
void VulkanRuntime::setResourceData(
const DescriptorSetIndex desIndex, const BindingIndex bindIndex,
const VulkanHostMemoryBuffer &hostMemBuffer) {
resourceData[desIndex][bindIndex] = hostMemBuffer;
resourceStorageClassData[desIndex][bindIndex] =
spirv::StorageClass::StorageBuffer;
}
void VulkanRuntime::setEntryPoint(const char *entryPointName) {
entryPoint = entryPointName;
}
void VulkanRuntime::setResourceData(const ResourceData &resData) {
resourceData = resData;
}
void VulkanRuntime::setShaderModule(uint8_t *shader, uint32_t size) {
binary = shader;
binarySize = size;
}
LogicalResult VulkanRuntime::mapStorageClassToDescriptorType(
spirv::StorageClass storageClass, VkDescriptorType &descriptorType) {
switch (storageClass) {
case spirv::StorageClass::StorageBuffer:
descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
break;
case spirv::StorageClass::Uniform:
descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
break;
default:
llvm::errs() << "unsupported storage class";
return failure();
}
return success();
}
LogicalResult VulkanRuntime::mapStorageClassToBufferUsageFlag(
spirv::StorageClass storageClass, VkBufferUsageFlagBits &bufferUsage) {
switch (storageClass) {
case spirv::StorageClass::StorageBuffer:
bufferUsage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
break;
case spirv::StorageClass::Uniform:
bufferUsage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
break;
default:
llvm::errs() << "unsupported storage class";
return failure();
}
return success();
}
LogicalResult VulkanRuntime::countDeviceMemorySize() {
for (const auto &resourceDataMapPair : resourceData) {
const auto &resourceDataMap = resourceDataMapPair.second;
for (const auto &resourceDataBindingPair : resourceDataMap) {
if (resourceDataBindingPair.second.size) {
memorySize += resourceDataBindingPair.second.size;
} else {
llvm::errs()
<< "expected buffer size greater than zero for resource data";
return failure();
}
}
}
return success();
}
LogicalResult VulkanRuntime::initRuntime() {
if (!resourceData.size()) {
llvm::errs() << "Vulkan runtime needs at least one resource";
return failure();
}
if (!binarySize || !binary) {
llvm::errs() << "binary shader size must be greater than zero";
return failure();
}
if (failed(countDeviceMemorySize())) {
return failure();
}
return success();
}
LogicalResult VulkanRuntime::destroy() {
// According to Vulkan spec:
// "To ensure that no work is active on the device, vkDeviceWaitIdle can be
// used to gate the destruction of the device. Prior to destroying a device,
// an application is responsible for destroying/freeing any Vulkan objects
// that were created using that device as the first parameter of the
// corresponding vkCreate* or vkAllocate* command."
RETURN_ON_VULKAN_ERROR(vkDeviceWaitIdle(device), "vkDeviceWaitIdle");
// Free and destroy.
vkFreeCommandBuffers(device, commandPool, commandBuffers.size(),
commandBuffers.data());
vkDestroyCommandPool(device, commandPool, nullptr);
vkFreeDescriptorSets(device, descriptorPool, descriptorSets.size(),
descriptorSets.data());
vkDestroyDescriptorPool(device, descriptorPool, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
for (auto &descriptorSetLayout: descriptorSetLayouts) {
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
}
vkDestroyShaderModule(device, shaderModule, nullptr);
// For each descriptor set.
for (auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
// For each descirptor binding.
for (auto &memoryBuffer : deviceMemoryBuffers) {
vkFreeMemory(device, memoryBuffer.deviceMemory, nullptr);
vkDestroyBuffer(device, memoryBuffer.buffer, nullptr);
}
}
vkDestroyDevice(device, nullptr);
vkDestroyInstance(instance, nullptr);
return success();
}
LogicalResult VulkanRuntime::run() {
// Create logical device, shader module and memory buffers.
if (failed(createInstance()) || failed(createDevice()) ||
failed(createMemoryBuffers()) || failed(createShaderModule())) {
return failure();
}
// Descriptor bindings divided into sets. Each descriptor binding
// must have a layout binding attached into a descriptor set layout.
// Each layout set must be binded into a pipeline layout.
initDescriptorSetLayoutBindingMap();
if (failed(createDescriptorSetLayout()) || failed(createPipelineLayout()) ||
// Each descriptor set must be allocated from a descriptor pool.
failed(createComputePipeline()) || failed(createDescriptorPool()) ||
failed(allocateDescriptorSets()) || failed(setWriteDescriptors()) ||
// Create command buffer.
failed(createCommandPool()) || failed(createComputeCommandBuffer())) {
return failure();
}
// Get working queue.
vkGetDeviceQueue(device, queueFamilyIndex, 0, &queue);
// Submit command buffer into the queue.
if (failed(submitCommandBuffersToQueue())) {
return failure();
}
RETURN_ON_VULKAN_ERROR(vkQueueWaitIdle(queue), "vkQueueWaitIdle");
return success();
}
LogicalResult VulkanRuntime::createInstance() {
VkApplicationInfo applicationInfo = {};
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
applicationInfo.pNext = nullptr;
applicationInfo.pApplicationName = "MLIR Vulkan runtime";
applicationInfo.applicationVersion = 0;
applicationInfo.pEngineName = "mlir";
applicationInfo.engineVersion = 0;
applicationInfo.apiVersion = VK_MAKE_VERSION(1, 0, 0);
VkInstanceCreateInfo instanceCreateInfo = {};
instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceCreateInfo.pNext = nullptr;
instanceCreateInfo.flags = 0;
instanceCreateInfo.pApplicationInfo = &applicationInfo;
instanceCreateInfo.enabledLayerCount = 0;
instanceCreateInfo.ppEnabledLayerNames = 0;
instanceCreateInfo.enabledExtensionCount = 0;
instanceCreateInfo.ppEnabledExtensionNames = 0;
RETURN_ON_VULKAN_ERROR(vkCreateInstance(&instanceCreateInfo, 0, &instance),
"vkCreateInstance");
return success();
}
LogicalResult VulkanRuntime::createDevice() {
uint32_t physicalDeviceCount = 0;
RETURN_ON_VULKAN_ERROR(
vkEnumeratePhysicalDevices(instance, &physicalDeviceCount, 0),
"vkEnumeratePhysicalDevices");
llvm::SmallVector<VkPhysicalDevice, 1> physicalDevices(physicalDeviceCount);
RETURN_ON_VULKAN_ERROR(vkEnumeratePhysicalDevices(instance,
&physicalDeviceCount,
physicalDevices.data()),
"vkEnumeratePhysicalDevices");
RETURN_ON_VULKAN_ERROR(physicalDeviceCount ? VK_SUCCESS : VK_INCOMPLETE,
"physicalDeviceCount");
// TODO(denis0x0D): find the best device.
const auto &physicalDevice = physicalDevices.front();
getBestComputeQueue(physicalDevice);
const float queuePrioritory = 1.0f;
VkDeviceQueueCreateInfo deviceQueueCreateInfo = {};
deviceQueueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
deviceQueueCreateInfo.pNext = nullptr;
deviceQueueCreateInfo.flags = 0;
deviceQueueCreateInfo.queueFamilyIndex = queueFamilyIndex;
deviceQueueCreateInfo.queueCount = 1;
deviceQueueCreateInfo.pQueuePriorities = &queuePrioritory;
// Structure specifying parameters of a newly created device.
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.pNext = nullptr;
deviceCreateInfo.flags = 0;
deviceCreateInfo.queueCreateInfoCount = 1;
deviceCreateInfo.pQueueCreateInfos = &deviceQueueCreateInfo;
deviceCreateInfo.enabledLayerCount = 0;
deviceCreateInfo.ppEnabledLayerNames = nullptr;
deviceCreateInfo.enabledExtensionCount = 0;
deviceCreateInfo.ppEnabledExtensionNames = nullptr;
deviceCreateInfo.pEnabledFeatures = nullptr;
RETURN_ON_VULKAN_ERROR(
vkCreateDevice(physicalDevice, &deviceCreateInfo, 0, &device),
"vkCreateDevice");
VkPhysicalDeviceMemoryProperties properties = {};
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &properties);
// Try to find memory type with following properties:
// VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT bit specifies that memory allocated
// with this type can be mapped for host access using vkMapMemory;
// VK_MEMORY_PROPERTY_HOST_COHERENT_BIT bit specifies that the host cache
// management commands vkFlushMappedMemoryRanges and
// vkInvalidateMappedMemoryRanges are not needed to flush host writes to the
// device or make device writes visible to the host, respectively.
for (uint32_t i = 0, e = properties.memoryTypeCount; i < e; ++i) {
if ((VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT &
properties.memoryTypes[i].propertyFlags) &&
(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT &
properties.memoryTypes[i].propertyFlags) &&
(memorySize <=
properties.memoryHeaps[properties.memoryTypes[i].heapIndex].size)) {
memoryTypeIndex = i;
break;
}
}
RETURN_ON_VULKAN_ERROR(memoryTypeIndex == VK_MAX_MEMORY_TYPES ? VK_INCOMPLETE
: VK_SUCCESS,
"invalid memoryTypeIndex");
return success();
}
LogicalResult
VulkanRuntime::getBestComputeQueue(const VkPhysicalDevice &physicalDevice) {
uint32_t queueFamilyPropertiesCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice,
&queueFamilyPropertiesCount, 0);
SmallVector<VkQueueFamilyProperties, 1> queueFamilyProperties(
queueFamilyPropertiesCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice,
&queueFamilyPropertiesCount,
queueFamilyProperties.data());
// VK_QUEUE_COMPUTE_BIT specifies that queues in this queue family support
// compute operations.
for (uint32_t i = 0; i < queueFamilyPropertiesCount; ++i) {
const VkQueueFlags maskedFlags =
(~(VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT) &
queueFamilyProperties[i].queueFlags);
if (!(VK_QUEUE_GRAPHICS_BIT & maskedFlags) &&
(VK_QUEUE_COMPUTE_BIT & maskedFlags)) {
queueFamilyIndex = i;
return success();
}
}
for (uint32_t i = 0; i < queueFamilyPropertiesCount; ++i) {
const VkQueueFlags maskedFlags =
(~(VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT) &
queueFamilyProperties[i].queueFlags);
if (VK_QUEUE_COMPUTE_BIT & maskedFlags) {
queueFamilyIndex = i;
return success();
}
}
llvm::errs() << "cannot find valid queue";
return failure();
}
LogicalResult VulkanRuntime::createMemoryBuffers() {
// For each descriptor set.
for (const auto &resourceDataMapPair : resourceData) {
llvm::SmallVector<VulkanDeviceMemoryBuffer, 1> deviceMemoryBuffers;
const auto descriptorSetIndex = resourceDataMapPair.first;
const auto &resourceDataMap = resourceDataMapPair.second;
// For each descriptor binding.
for (const auto &resourceDataBindingPair : resourceDataMap) {
// Create device memory buffer.
VulkanDeviceMemoryBuffer memoryBuffer;
memoryBuffer.bindingIndex = resourceDataBindingPair.first;
VkDescriptorType descriptorType = {};
VkBufferUsageFlagBits bufferUsage = {};
// Check that descriptor set has storage class map.
const auto resourceStorageClassMapIt =
resourceStorageClassData.find(descriptorSetIndex);
if (resourceStorageClassMapIt == resourceStorageClassData.end()) {
llvm::errs()
<< "cannot find storge class for resource in descriptor set: "
<< descriptorSetIndex;
return failure();
}
// Check that specific descriptor binding has storage class.
const auto &resourceStorageClassMap = resourceStorageClassMapIt->second;
const auto resourceStorageClassIt =
resourceStorageClassMap.find(resourceDataBindingPair.first);
if (resourceStorageClassIt == resourceStorageClassMap.end()) {
llvm::errs()
<< "cannot find storage class for resource with descriptor index: "
<< resourceDataBindingPair.first;
return failure();
}
const auto resourceStorageClassBinding = resourceStorageClassIt->second;
if (failed(mapStorageClassToDescriptorType(resourceStorageClassBinding,
descriptorType)) ||
failed(mapStorageClassToBufferUsageFlag(resourceStorageClassBinding,
bufferUsage))) {
llvm::errs() << "storage class for resource with descriptor binding: "
<< resourceDataBindingPair.first
<< " in the descriptor set: " << descriptorSetIndex
<< " is not supported ";
return failure();
}
// Set descriptor type for the specific device memory buffer.
memoryBuffer.descriptorType = descriptorType;
const auto bufferSize = resourceDataBindingPair.second.size;
// Specify memory allocation info.
VkMemoryAllocateInfo memoryAllocateInfo = {};
memoryAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memoryAllocateInfo.pNext = nullptr;
memoryAllocateInfo.allocationSize = bufferSize;
memoryAllocateInfo.memoryTypeIndex = memoryTypeIndex;
// Allocate device memory.
RETURN_ON_VULKAN_ERROR(vkAllocateMemory(device, &memoryAllocateInfo, 0,
&memoryBuffer.deviceMemory),
"vkAllocateMemory");
void *payload;
RETURN_ON_VULKAN_ERROR(vkMapMemory(device, memoryBuffer.deviceMemory, 0,
bufferSize, 0,
reinterpret_cast<void **>(&payload)),
"vkMapMemory");
// Copy host memory into the mapped area.
std::memcpy(payload, resourceDataBindingPair.second.ptr, bufferSize);
vkUnmapMemory(device, memoryBuffer.deviceMemory);
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.pNext = nullptr;
bufferCreateInfo.flags = 0;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = bufferUsage;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufferCreateInfo.queueFamilyIndexCount = 1;
bufferCreateInfo.pQueueFamilyIndices = &queueFamilyIndex;
RETURN_ON_VULKAN_ERROR(
vkCreateBuffer(device, &bufferCreateInfo, 0, &memoryBuffer.buffer),
"vkCreateBuffer");
// Bind buffer and device memory.
RETURN_ON_VULKAN_ERROR(vkBindBufferMemory(device, memoryBuffer.buffer,
memoryBuffer.deviceMemory, 0),
"vkBindBufferMemory");
// Update buffer info.
memoryBuffer.bufferInfo.buffer = memoryBuffer.buffer;
memoryBuffer.bufferInfo.offset = 0;
memoryBuffer.bufferInfo.range = VK_WHOLE_SIZE;
deviceMemoryBuffers.push_back(memoryBuffer);
}
// Associate device memory buffers with a descriptor set.
deviceMemoryBufferMap[descriptorSetIndex] = deviceMemoryBuffers;
}
return success();
}
LogicalResult VulkanRuntime::createShaderModule() {
VkShaderModuleCreateInfo shaderModuleCreateInfo = {};
shaderModuleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderModuleCreateInfo.pNext = nullptr;
shaderModuleCreateInfo.flags = 0;
// Set size in bytes.
shaderModuleCreateInfo.codeSize = binarySize;
// Set pointer to the binary shader.
shaderModuleCreateInfo.pCode = reinterpret_cast<uint32_t *>(binary);
RETURN_ON_VULKAN_ERROR(
vkCreateShaderModule(device, &shaderModuleCreateInfo, 0, &shaderModule),
"vkCreateShaderModule");
return success();
}
void VulkanRuntime::initDescriptorSetLayoutBindingMap() {
for (const auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
SmallVector<VkDescriptorSetLayoutBinding, 1> descriptorSetLayoutBindings;
const auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
const auto descriptorSetIndex = deviceMemoryBufferMapPair.first;
// Create a layout binding for each descriptor.
for (const auto &memBuffer : deviceMemoryBuffers) {
VkDescriptorSetLayoutBinding descriptorSetLayoutBinding = {};
descriptorSetLayoutBinding.binding = memBuffer.bindingIndex;
descriptorSetLayoutBinding.descriptorType = memBuffer.descriptorType;
descriptorSetLayoutBinding.descriptorCount = 1;
descriptorSetLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
descriptorSetLayoutBinding.pImmutableSamplers = 0;
descriptorSetLayoutBindings.push_back(descriptorSetLayoutBinding);
}
descriptorSetLayoutBindingMap[descriptorSetIndex] =
descriptorSetLayoutBindings;
}
}
LogicalResult VulkanRuntime::createDescriptorSetLayout() {
for (const auto &deviceMemoryBufferMapPair : deviceMemoryBufferMap) {
const auto descriptorSetIndex = deviceMemoryBufferMapPair.first;
const auto &deviceMemoryBuffers = deviceMemoryBufferMapPair.second;
// Each descriptor in a descriptor set must be the same type.
VkDescriptorType descriptorType =
deviceMemoryBuffers.front().descriptorType;
const uint32_t descriptorSize = deviceMemoryBuffers.size();
const auto descriptorSetLayoutBindingIt =
descriptorSetLayoutBindingMap.find(descriptorSetIndex);
if (descriptorSetLayoutBindingIt == descriptorSetLayoutBindingMap.end()) {
llvm::errs() << "cannot find layout bindings for the set with number: "
<< descriptorSetIndex;
return failure();
}
const auto &descriptorSetLayoutBindings =
descriptorSetLayoutBindingIt->second;
// Create descriptor set layout.
VkDescriptorSetLayout descriptorSetLayout = {};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = {};
descriptorSetLayoutCreateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorSetLayoutCreateInfo.pNext = nullptr;
descriptorSetLayoutCreateInfo.flags = 0;
// Amount of descriptor bindings in a layout set.
descriptorSetLayoutCreateInfo.bindingCount =
descriptorSetLayoutBindings.size();
descriptorSetLayoutCreateInfo.pBindings =
descriptorSetLayoutBindings.data();
RETURN_ON_VULKAN_ERROR(
vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCreateInfo, 0,
&descriptorSetLayout),
"vkCreateDescriptorSetLayout");
descriptorSetLayouts.push_back(descriptorSetLayout);
descriptorSetInfoPool.push_back(
{descriptorSetIndex, descriptorSize, descriptorType});
}
return success();
}
LogicalResult VulkanRuntime::createPipelineLayout() {
// Associate descriptor sets with a pipeline layout.
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = {};
pipelineLayoutCreateInfo.sType =
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCreateInfo.pNext = nullptr;
pipelineLayoutCreateInfo.flags = 0;
pipelineLayoutCreateInfo.setLayoutCount = descriptorSetLayouts.size();
pipelineLayoutCreateInfo.pSetLayouts = descriptorSetLayouts.data();
pipelineLayoutCreateInfo.pushConstantRangeCount = 0;
pipelineLayoutCreateInfo.pPushConstantRanges = 0;
RETURN_ON_VULKAN_ERROR(vkCreatePipelineLayout(device,
&pipelineLayoutCreateInfo, 0,
&pipelineLayout),
"vkCreatePipelineLayout");
return success();
}
LogicalResult VulkanRuntime::createComputePipeline() {
VkPipelineShaderStageCreateInfo stageInfo = {};
stageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stageInfo.pNext = nullptr;
stageInfo.flags = 0;
stageInfo.stage = VK_SHADER_STAGE_COMPUTE_BIT;
stageInfo.module = shaderModule;
// Set entry point.
stageInfo.pName = entryPoint;
stageInfo.pSpecializationInfo = 0;
VkComputePipelineCreateInfo computePipelineCreateInfo = {};
computePipelineCreateInfo.sType =
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
computePipelineCreateInfo.pNext = nullptr;
computePipelineCreateInfo.flags = 0;
computePipelineCreateInfo.stage = stageInfo;
computePipelineCreateInfo.layout = pipelineLayout;
computePipelineCreateInfo.basePipelineHandle = 0;
computePipelineCreateInfo.basePipelineIndex = 0;
RETURN_ON_VULKAN_ERROR(vkCreateComputePipelines(device, 0, 1,
&computePipelineCreateInfo, 0,
&pipeline),
"vkCreateComputePipelines");
return success();
}
LogicalResult VulkanRuntime::createDescriptorPool() {
llvm::SmallVector<VkDescriptorPoolSize, 1> descriptorPoolSizes;
for (const auto &descriptorSetInfo : descriptorSetInfoPool) {
// For each descriptor set populate descriptor pool size.
VkDescriptorPoolSize descriptorPoolSize = {};
descriptorPoolSize.type = descriptorSetInfo.descriptorType;
descriptorPoolSize.descriptorCount = descriptorSetInfo.descriptorSize;
descriptorPoolSizes.push_back(descriptorPoolSize);
}
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = {};
descriptorPoolCreateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCreateInfo.pNext = nullptr;
descriptorPoolCreateInfo.flags = 0;
descriptorPoolCreateInfo.maxSets = descriptorPoolSizes.size();
descriptorPoolCreateInfo.poolSizeCount = descriptorPoolSizes.size();
descriptorPoolCreateInfo.pPoolSizes = descriptorPoolSizes.data();
RETURN_ON_VULKAN_ERROR(vkCreateDescriptorPool(device,
&descriptorPoolCreateInfo, 0,
&descriptorPool),
"vkCreateDescriptorPool");
return success();
}
LogicalResult VulkanRuntime::allocateDescriptorSets() {
VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = {};
// Size of desciptor sets and descriptor layout sets is the same.
descriptorSets.resize(descriptorSetLayouts.size());
descriptorSetAllocateInfo.sType =
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descriptorSetAllocateInfo.pNext = nullptr;
descriptorSetAllocateInfo.descriptorPool = descriptorPool;
descriptorSetAllocateInfo.descriptorSetCount = descriptorSetLayouts.size();
descriptorSetAllocateInfo.pSetLayouts = descriptorSetLayouts.data();
RETURN_ON_VULKAN_ERROR(vkAllocateDescriptorSets(device,
&descriptorSetAllocateInfo,
descriptorSets.data()),
"vkAllocateDescriptorSets");
return success();
}
LogicalResult VulkanRuntime::setWriteDescriptors() {
if (descriptorSets.size() != descriptorSetInfoPool.size()) {
llvm::errs() << "Each descriptor set must have descriptor set information";
return failure();
}
// For each descriptor set.
auto descriptorSetIt = descriptorSets.begin();
// Each descriptor set is associated with descriptor set info.
for (const auto &descriptorSetInfo : descriptorSetInfoPool) {
// For each device memory buffer in the descriptor set.
const auto &deviceMemoryBuffers =
deviceMemoryBufferMap[descriptorSetInfo.descriptorSet];
for (const auto &memoryBuffer : deviceMemoryBuffers) {
// Structure describing descriptor sets to write to.
VkWriteDescriptorSet wSet = {};
wSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wSet.pNext = nullptr;
// Descirptor set.
wSet.dstSet = *descriptorSetIt;
wSet.dstBinding = memoryBuffer.bindingIndex;
wSet.dstArrayElement = 0;
wSet.descriptorCount = 1;
wSet.descriptorType = memoryBuffer.descriptorType;
wSet.pImageInfo = nullptr;
wSet.pBufferInfo = &memoryBuffer.bufferInfo;
wSet.pTexelBufferView = nullptr;
vkUpdateDescriptorSets(device, 1, &wSet, 0, nullptr);
}
// Increment descriptor set iterator.
++descriptorSetIt;
}
return success();
}
LogicalResult VulkanRuntime::createCommandPool() {
VkCommandPoolCreateInfo commandPoolCreateInfo = {};
commandPoolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolCreateInfo.pNext = nullptr;
commandPoolCreateInfo.flags = 0;
commandPoolCreateInfo.queueFamilyIndex = queueFamilyIndex;
RETURN_ON_VULKAN_ERROR(
vkCreateCommandPool(device, &commandPoolCreateInfo, 0, &commandPool),
"vkCreateCommandPool");
return success();
}
LogicalResult VulkanRuntime::createComputeCommandBuffer() {
VkCommandBufferAllocateInfo commandBufferAllocateInfo = {};
VkCommandBuffer commandBuffer;
commandBufferAllocateInfo.sType =
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBufferAllocateInfo.pNext = nullptr;
commandBufferAllocateInfo.commandPool = commandPool;
commandBufferAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBufferAllocateInfo.commandBufferCount = 1;
RETURN_ON_VULKAN_ERROR(vkAllocateCommandBuffers(device,
&commandBufferAllocateInfo,
&commandBuffer),
"vkAllocateCommandBuffers");
VkCommandBufferBeginInfo commandBufferBeginInfo = {};
commandBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
commandBufferBeginInfo.pNext = nullptr;
commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
commandBufferBeginInfo.pInheritanceInfo = nullptr;
// Commands begin.
RETURN_ON_VULKAN_ERROR(
vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo),
"vkBeginCommandBuffer");
// Commands.
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE,
pipelineLayout, 0, descriptorSets.size(),
descriptorSets.data(), 0, 0);
vkCmdDispatch(commandBuffer, numWorkGroups.x, numWorkGroups.y,
numWorkGroups.z);
// Commands end.
RETURN_ON_VULKAN_ERROR(vkEndCommandBuffer(commandBuffer),
"vkEndCommandBuffer");
commandBuffers.push_back(commandBuffer);
return success();
}
LogicalResult VulkanRuntime::submitCommandBuffersToQueue() {
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = 0;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = commandBuffers.size();
submitInfo.pCommandBuffers = commandBuffers.data();
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
RETURN_ON_VULKAN_ERROR(vkQueueSubmit(queue, 1, &submitInfo, 0),
"vkQueueSubmit");
return success();
}
LogicalResult VulkanRuntime::updateHostMemoryBuffers() {
// For each descriptor set.
for (auto &resourceDataMapPair : resourceData) {
auto &resourceDataMap = resourceDataMapPair.second;
auto &deviceMemoryBuffers =
deviceMemoryBufferMap[resourceDataMapPair.first];
// For each device memory buffer in the set.
for (auto &deviceMemoryBuffer : deviceMemoryBuffers) {
if (resourceDataMap.count(deviceMemoryBuffer.bindingIndex)) {
void *payload;
auto &hostMemoryBuffer =
resourceDataMap[deviceMemoryBuffer.bindingIndex];
RETURN_ON_VULKAN_ERROR(vkMapMemory(device,
deviceMemoryBuffer.deviceMemory, 0,
hostMemoryBuffer.size, 0,
reinterpret_cast<void **>(&payload)),
"vkMapMemory");
std::memcpy(hostMemoryBuffer.ptr, payload, hostMemoryBuffer.size);
vkUnmapMemory(device, deviceMemoryBuffer.deviceMemory);
}
}
}
return success();
}

View file

@ -0,0 +1,225 @@
//===- VulkanRuntime.cpp - MLIR Vulkan runtime ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares Vulkan runtime API.
//
//===----------------------------------------------------------------------===//
#ifndef VULKAN_RUNTIME_H
#define VULKAN_RUNTIME_H
#include "mlir/Analysis/Passes.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/StringExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/ToolOutputFile.h"
#include <vulkan/vulkan.h>
using namespace mlir;
using DescriptorSetIndex = uint32_t;
using BindingIndex = uint32_t;
/// Struct containing information regarding to a device memory buffer.
struct VulkanDeviceMemoryBuffer {
BindingIndex bindingIndex{0};
VkDescriptorType descriptorType{VK_DESCRIPTOR_TYPE_MAX_ENUM};
VkDescriptorBufferInfo bufferInfo{};
VkBuffer buffer{VK_NULL_HANDLE};
VkDeviceMemory deviceMemory{VK_NULL_HANDLE};
};
/// Struct containing information regarding to a host memory buffer.
struct VulkanHostMemoryBuffer {
/// Pointer to a host memory.
void *ptr{nullptr};
/// Size of a host memory in bytes.
uint32_t size{0};
};
/// Struct containing the number of local workgroups to dispatch for each
/// dimension.
struct NumWorkGroups {
uint32_t x{1};
uint32_t y{1};
uint32_t z{1};
};
/// Struct containing information regarding a descriptor set.
struct DescriptorSetInfo {
/// Index of a descriptor set in descriptor sets.
DescriptorSetIndex descriptorSet{0};
/// Number of desriptors in a set.
uint32_t descriptorSize{0};
/// Type of a descriptor set.
VkDescriptorType descriptorType{VK_DESCRIPTOR_TYPE_MAX_ENUM};
};
/// VulkanHostMemoryBuffer mapped into a descriptor set and a binding.
using ResourceData =
llvm::DenseMap<DescriptorSetIndex,
llvm::DenseMap<BindingIndex, VulkanHostMemoryBuffer>>;
/// StorageClass mapped into a descriptor set and a binding.
using ResourceStorageClassBindingMap =
llvm::DenseMap<DescriptorSetIndex,
llvm::DenseMap<BindingIndex, mlir::spirv::StorageClass>>;
inline void emitVulkanError(const llvm::Twine &message, VkResult error) {
llvm::errs()
<< message.concat(" failed with error code ").concat(llvm::Twine{error});
}
#define RETURN_ON_VULKAN_ERROR(result, msg) \
if ((result) != VK_SUCCESS) { \
emitVulkanError(msg, (result)); \
return failure(); \
}
/// Vulkan runtime.
/// The purpose of this class is to run SPIR-V compute shader on Vulkan
/// device.
/// Before the run, user must provide and set resource data with descriptors,
/// SPIR-V shader, number of work groups and entry point. After the creation of
/// VulkanRuntime, special methods must be called in the following
/// sequence: initRuntime(), run(), updateHostMemoryBuffers(), destroy();
/// each method in the sequence returns succes or failure depends on the Vulkan
/// result code.
class VulkanRuntime {
public:
explicit VulkanRuntime() = default;
VulkanRuntime(const VulkanRuntime &) = delete;
VulkanRuntime &operator=(const VulkanRuntime &) = delete;
/// Sets needed data for Vulkan runtime.
void setResourceData(const ResourceData &resData);
void setResourceData(const DescriptorSetIndex desIndex,
const BindingIndex bindIndex,
const VulkanHostMemoryBuffer &hostMemBuffer);
void setShaderModule(uint8_t *shader, uint32_t size);
void setNumWorkGroups(const NumWorkGroups &numberWorkGroups);
void setResourceStorageClassBindingMap(
const ResourceStorageClassBindingMap &stClassData);
void setEntryPoint(const char *entryPointName);
/// Runtime initialization.
LogicalResult initRuntime();
/// Runs runtime.
LogicalResult run();
/// Updates host memory buffers.
LogicalResult updateHostMemoryBuffers();
/// Destroys all created vulkan objects and resources.
LogicalResult destroy();
private:
//===--------------------------------------------------------------------===//
// Pipeline creation methods.
//===--------------------------------------------------------------------===//
LogicalResult createInstance();
LogicalResult createDevice();
LogicalResult getBestComputeQueue(const VkPhysicalDevice &physicalDevice);
LogicalResult createMemoryBuffers();
LogicalResult createShaderModule();
void initDescriptorSetLayoutBindingMap();
LogicalResult createDescriptorSetLayout();
LogicalResult createPipelineLayout();
LogicalResult createComputePipeline();
LogicalResult createDescriptorPool();
LogicalResult allocateDescriptorSets();
LogicalResult setWriteDescriptors();
LogicalResult createCommandPool();
LogicalResult createComputeCommandBuffer();
LogicalResult submitCommandBuffersToQueue();
//===--------------------------------------------------------------------===//
// Helper methods.
//===--------------------------------------------------------------------===//
/// Maps storage class to a descriptor type.
LogicalResult
mapStorageClassToDescriptorType(spirv::StorageClass storageClass,
VkDescriptorType &descriptorType);
/// Maps storage class to buffer usage flags.
LogicalResult
mapStorageClassToBufferUsageFlag(spirv::StorageClass storageClass,
VkBufferUsageFlagBits &bufferUsage);
LogicalResult countDeviceMemorySize();
//===--------------------------------------------------------------------===//
// Vulkan objects.
//===--------------------------------------------------------------------===//
VkInstance instance;
VkDevice device;
VkQueue queue;
/// Specifies VulkanDeviceMemoryBuffers divided into sets.
llvm::DenseMap<DescriptorSetIndex,
llvm::SmallVector<VulkanDeviceMemoryBuffer, 1>>
deviceMemoryBufferMap;
/// Specifies shader module.
VkShaderModule shaderModule;
/// Specifies layout bindings.
llvm::DenseMap<DescriptorSetIndex,
llvm::SmallVector<VkDescriptorSetLayoutBinding, 1>>
descriptorSetLayoutBindingMap;
/// Specifies layouts of descriptor sets.
llvm::SmallVector<VkDescriptorSetLayout, 1> descriptorSetLayouts;
VkPipelineLayout pipelineLayout;
/// Specifies descriptor sets.
llvm::SmallVector<VkDescriptorSet, 1> descriptorSets;
/// Specifies a pool of descriptor set info, each descriptor set must have
/// information such as type, index and amount of bindings.
llvm::SmallVector<DescriptorSetInfo, 1> descriptorSetInfoPool;
VkDescriptorPool descriptorPool;
/// Computation pipeline.
VkPipeline pipeline;
VkCommandPool commandPool;
llvm::SmallVector<VkCommandBuffer, 1> commandBuffers;
//===--------------------------------------------------------------------===//
// Vulkan memory context.
//===--------------------------------------------------------------------===//
uint32_t queueFamilyIndex{0};
uint32_t memoryTypeIndex{VK_MAX_MEMORY_TYPES};
VkDeviceSize memorySize{0};
//===--------------------------------------------------------------------===//
// Vulkan execution context.
//===--------------------------------------------------------------------===//
NumWorkGroups numWorkGroups;
const char *entryPoint{nullptr};
uint8_t *binary{nullptr};
uint32_t binarySize{0};
//===--------------------------------------------------------------------===//
// Vulkan resource data and storage classes.
//===--------------------------------------------------------------------===//
ResourceData resourceData;
ResourceStorageClassBindingMap resourceStorageClassData;
};
#endif

View file

@ -0,0 +1,46 @@
//===- mlir-vulkan-runner.cpp - MLIR Vulkan Execution Driver --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a command line utility that executes an MLIR file on the Vulkan by
// translating MLIR GPU module to SPIR-V and host part to LLVM IR before
// JIT-compiling and executing the latter.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToSPIRV/ConvertGPUToSPIRVPass.h"
#include "mlir/Conversion/GPUToVulkan/ConvertGPUToVulkanPass.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Conversion/StandardToSPIRV/ConvertStandardToSPIRVPass.h"
#include "mlir/Dialect/GPU/Passes.h"
#include "mlir/Dialect/SPIRV/Passes.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/JitRunner.h"
using namespace mlir;
static LogicalResult runMLIRPasses(ModuleOp module) {
PassManager passManager(module.getContext());
applyPassManagerCLOptions(passManager);
passManager.addPass(createGpuKernelOutliningPass());
passManager.addPass(createLegalizeStdOpsForSPIRVLoweringPass());
passManager.addPass(createConvertGPUToSPIRVPass());
OpPassManager &modulePM = passManager.nest<spirv::ModuleOp>();
modulePM.addPass(spirv::createLowerABIAttributesPass());
passManager.addPass(createConvertGpuLaunchFuncToVulkanCallsPass());
passManager.addPass(createLowerToLLVMPass());
return passManager.run(module);
}
int main(int argc, char **argv) {
llvm::llvm_shutdown_obj x;
registerPassManagerCLOptions();
return mlir::JitRunnerMain(argc, argv, &runMLIRPasses);
}

View file

@ -0,0 +1,97 @@
//===- vulkan-runtime-wrappers.cpp - MLIR Vulkan runner wrapper library ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements C runtime wrappers around the VulkanRuntime.
//
//===----------------------------------------------------------------------===//
#include <mutex>
#include <numeric>
#include "VulkanRuntime.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
namespace {
// TODO(denis0x0D): This static machinery should be replaced by `initVulkan` and
// `deinitVulkan` to be more explicit and to avoid static initialization and
// destruction.
class VulkanRuntimeManager;
static llvm::ManagedStatic<VulkanRuntimeManager> vkRuntimeManager;
class VulkanRuntimeManager {
public:
VulkanRuntimeManager() = default;
VulkanRuntimeManager(const VulkanRuntimeManager &) = delete;
VulkanRuntimeManager operator=(const VulkanRuntimeManager &) = delete;
~VulkanRuntimeManager() = default;
void setResourceData(DescriptorSetIndex setIndex, BindingIndex bindIndex,
const VulkanHostMemoryBuffer &memBuffer) {
std::lock_guard<std::mutex> lock(mutex);
vulkanRuntime.setResourceData(setIndex, bindIndex, memBuffer);
}
void setEntryPoint(const char *entryPoint) {
std::lock_guard<std::mutex> lock(mutex);
vulkanRuntime.setEntryPoint(entryPoint);
}
void setNumWorkGroups(NumWorkGroups numWorkGroups) {
std::lock_guard<std::mutex> lock(mutex);
vulkanRuntime.setNumWorkGroups(numWorkGroups);
}
void setShaderModule(uint8_t *shader, uint32_t size) {
std::lock_guard<std::mutex> lock(mutex);
vulkanRuntime.setShaderModule(shader, size);
}
void runOnVulkan() {
std::lock_guard<std::mutex> lock(mutex);
if (failed(vulkanRuntime.initRuntime()) || failed(vulkanRuntime.run()) ||
failed(vulkanRuntime.updateHostMemoryBuffers()) ||
failed(vulkanRuntime.destroy())) {
llvm::errs() << "runOnVulkan failed";
}
}
private:
VulkanRuntime vulkanRuntime;
std::mutex mutex;
};
} // namespace
extern "C" {
/// Fills the given memref with the given value.
/// Binds the given memref to the given descriptor set and descriptor index.
void setResourceData(const DescriptorSetIndex setIndex, BindingIndex bindIndex,
float *allocated, float *aligned, int64_t offset,
int64_t size, int64_t stride, float value) {
std::fill_n(allocated, size, value);
VulkanHostMemoryBuffer memBuffer{allocated,
static_cast<uint32_t>(size * sizeof(float))};
vkRuntimeManager->setResourceData(setIndex, bindIndex, memBuffer);
}
void setEntryPoint(const char *entryPoint) {
vkRuntimeManager->setEntryPoint(entryPoint);
}
void setNumWorkGroups(uint32_t x, uint32_t y, uint32_t z) {
vkRuntimeManager->setNumWorkGroups({x, y, z});
}
void setBinaryShader(uint8_t *shader, uint32_t size) {
vkRuntimeManager->setShaderModule(shader, size);
}
void runOnVulkan() { vkRuntimeManager->runOnVulkan(); }
}