[mlir][doc] Move documentation of extensible dialects

Merge the documentation of the definition of extensible dialects
with the definition of dialects.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D125200
This commit is contained in:
Mathieu Fehr 2022-05-09 15:37:13 -07:00 committed by River Riddle
parent be768164a7
commit 67d0bc27c0
2 changed files with 366 additions and 369 deletions

View file

@ -331,3 +331,369 @@ All new dialects are strongly encouraged to use the `kEmitAccessorPrefix_Prefixe
the `Raw` form is deprecated and in the process of being removed.
Note: Remove this section when all dialects have been switched to the new accessor form.
## Defining an Extensible dialect
This section documents the design and API of the extensible dialects. Extensible
dialects are dialects that can be extended with new operations and types defined
at runtime. This allows for users to define dialects via with meta-programming,
or from another language, without having to recompile C++ code.
### Defining an extensible dialect
Dialects defined in C++ can be extended with new operations, types, etc., at
runtime by inheriting from `mlir::ExtensibleDialect` instead of `mlir::Dialect`
(note that `ExtensibleDialect` inherits from `Dialect`). The `ExtensibleDialect`
class contains the necessary fields and methods to extend the dialect at
runtime.
```c++
class MyDialect : public mlir::ExtensibleDialect {
...
}
```
For dialects defined in TableGen, this is done by setting the `isExtensible`
flag to `1`.
```tablegen
def Test_Dialect : Dialect {
let isExtensible = 1;
...
}
```
An extensible `Dialect` can be casted back to `ExtensibleDialect` using
`llvm::dyn_cast`, or `llvm::cast`:
```c++
if (auto extensibleDialect = llvm::dyn_cast<ExtensibleDialect>(dialect)) {
...
}
```
### Defining an operation at runtime
The `DynamicOpDefinition` class represents the definition of an operation
defined at runtime. It is created using the `DynamicOpDefinition::get`
functions. An operation defined at runtime must provide a name, a dialect in
which the operation will be registered in, an operation verifier. It may also
optionally define a custom parser and a printer, fold hook, and more.
```c++
// The operation name, without the dialect name prefix.
StringRef name = "my_operation_name";
// The dialect defining the operation.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// Operation verifier definition.
AbstractOperation::VerifyInvariantsFn verifyFn = [](Operation* op) {
// Logic for the operation verification.
...
}
// Parser function definition.
AbstractOperation::ParseAssemblyFn parseFn =
[](OpAsmParser &parser, OperationState &state) {
// Parse the operation, given that the name is already parsed.
...
};
// Printer function
auto printFn = [](Operation *op, OpAsmPrinter &printer) {
printer << op->getName();
// Print the operation, given that the name is already printed.
...
};
// General folder implementation, see AbstractOperation::foldHook for more
// information.
auto foldHookFn = [](Operation * op, ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &result) {
...
};
// Returns any canonicalization pattern rewrites that the operation
// supports, for use by the canonicalization pass.
auto getCanonicalizationPatterns =
[](RewritePatternSet &results, MLIRContext *context) {
...
}
// Definition of the operation.
std::unique_ptr<DynamicOpDefinition> opDef =
DynamicOpDefinition::get(name, dialect, std::move(verifyFn),
std::move(parseFn), std::move(printFn), std::move(foldHookFn),
std::move(getCanonicalizationPatterns));
```
Once the operation is defined, it can be registered by an `ExtensibleDialect`:
```c++
extensibleDialect->registerDynamicOperation(std::move(opDef));
```
Note that the `Dialect` given to the operation should be the one registering
the operation.
### Using an operation defined at runtime
It is possible to match on an operation defined at runtime using their names:
```c++
if (op->getName().getStringRef() == "my_dialect.my_dynamic_op") {
...
}
```
An operation defined at runtime can be created by instantiating an
`OperationState` with the operation name, and using it with a rewriter
(for instance a `PatternRewriter`) to create the operation.
```c++
OperationState state(location, "my_dialect.my_dynamic_op",
operands, resultTypes, attributes);
rewriter.createOperation(state);
```
### Defining a type at runtime
Contrary to types defined in C++ or in TableGen, types defined at runtime can
only have as argument a list of `Attribute`.
Similarily to operations, a type is defined at runtime using the class
`DynamicTypeDefinition`, which is created using the `DynamicTypeDefinition::get`
functions. A type definition requires a name, the dialect that will register the
type, and a parameter verifier. It can also define optionally a custom parser
and printer for the arguments (the type name is assumed to be already
parsed/printed).
```c++
// The type name, without the dialect name prefix.
StringRef name = "my_type_name";
// The dialect defining the type.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// The type verifier.
// A type defined at runtime has a list of attributes as parameters.
auto verifier = [](function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> args) {
...
};
// The type parameters parser.
auto parser = [](DialectAsmParser &parser,
llvm::SmallVectorImpl<Attribute> &parsedParams) {
...
};
// The type parameters printer.
auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) {
...
};
std::unique_ptr<DynamicTypeDefinition> typeDef =
DynamicTypeDefinition::get(std::move(name), std::move(dialect),
std::move(verifier), std::move(printer),
std::move(parser));
```
If the printer and the parser are ommited, a default parser and printer is
generated with the format `!dialect.typename<arg1, arg2, ..., argN>`.
The type can then be registered by the `ExtensibleDialect`:
```c++
dialect->registerDynamicType(std::move(typeDef));
```
### Parsing types defined at runtime in an extensible dialect
`parseType` methods generated by TableGen can parse types defined at runtime,
though overriden `parseType` methods need to add the necessary support for them.
```c++
Type MyDialect::parseType(DialectAsmParser &parser) const {
...
// The type name.
StringRef typeTag;
if (failed(parser.parseKeyword(&typeTag)))
return Type();
// Try to parse a dynamic type with 'typeTag' name.
Type dynType;
auto parseResult = parseOptionalDynamicType(typeTag, parser, dynType);
if (parseResult.hasValue()) {
if (succeeded(parseResult.getValue()))
return dynType;
return Type();
}
...
}
```
### Using a type defined at runtime
Dynamic types are instances of `DynamicType`. It is possible to get a dynamic
type with `DynamicType::get` and `ExtensibleDialect::lookupTypeDefinition`.
```c++
auto typeDef = extensibleDialect->lookupTypeDefinition("my_dynamic_type");
ArrayRef<Attribute> params = ...;
auto type = DynamicType::get(typeDef, params);
```
It is also possible to cast a `Type` known to be defined at runtime to a
`DynamicType`.
```c++
auto dynType = type.cast<DynamicType>();
auto typeDef = dynType.getTypeDef();
auto args = dynType.getParams();
```
### Defining an attribute at runtime
Similar to types defined at runtime, attributes defined at runtime can only have
as argument a list of `Attribute`.
Similarily to types, an attribute is defined at runtime using the class
`DynamicAttrDefinition`, which is created using the `DynamicAttrDefinition::get`
functions. An attribute definition requires a name, the dialect that will
register the attribute, and a parameter verifier. It can also define optionally
a custom parser and printer for the arguments (the attribute name is assumed to
be already parsed/printed).
```c++
// The attribute name, without the dialect name prefix.
StringRef name = "my_attribute_name";
// The dialect defining the attribute.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// The attribute verifier.
// An attribute defined at runtime has a list of attributes as parameters.
auto verifier = [](function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> args) {
...
};
// The attribute parameters parser.
auto parser = [](DialectAsmParser &parser,
llvm::SmallVectorImpl<Attribute> &parsedParams) {
...
};
// The attribute parameters printer.
auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) {
...
};
std::unique_ptr<DynamicAttrDefinition> attrDef =
DynamicAttrDefinition::get(std::move(name), std::move(dialect),
std::move(verifier), std::move(printer),
std::move(parser));
```
If the printer and the parser are ommited, a default parser and printer is
generated with the format `!dialect.attrname<arg1, arg2, ..., argN>`.
The attribute can then be registered by the `ExtensibleDialect`:
```c++
dialect->registerDynamicAttr(std::move(typeDef));
```
### Parsing attributes defined at runtime in an extensible dialect
`parseAttribute` methods generated by TableGen can parse attributes defined at
runtime, though overriden `parseAttribute` methods need to add the necessary
support for them.
```c++
Attribute MyDialect::parseAttribute(DialectAsmParser &parser,
Type type) const override {
...
// The attribute name.
StringRef attrTag;
if (failed(parser.parseKeyword(&attrTag)))
return Attribute();
// Try to parse a dynamic attribute with 'attrTag' name.
Attribute dynAttr;
auto parseResult = parseOptionalDynamicAttr(attrTag, parser, dynAttr);
if (parseResult.hasValue()) {
if (succeeded(parseResult.getValue()))
return dynAttr;
return Attribute();
}
```
### Using an attribute defined at runtime
Similar to types, attributes defined at runtime are instances of `DynamicAttr`.
It is possible to get a dynamic attribute with `DynamicAttr::get` and
`ExtensibleDialect::lookupAttrDefinition`.
```c++
auto attrDef = extensibleDialect->lookupAttrDefinition("my_dynamic_attr");
ArrayRef<Attribute> params = ...;
auto attr = DynamicAttr::get(attrDef, params);
```
It is also possible to cast an `Attribute` known to be defined at runtime to a
`DynamicAttr`.
```c++
auto dynAttr = attr.cast<DynamicAttr>();
auto attrDef = dynAttr.getAttrDef();
auto args = dynAttr.getParams();
```
### Implementation Details of Extensible Dialects
#### Extensible dialect
The role of extensible dialects is to own the necessary data for defined
operations and types. They also contain the necessary accessors to easily
access them.
In order to cast a `Dialect` back to an `ExtensibleDialect`, we implement the
`IsExtensibleDialect` interface to all `ExtensibleDialect`. The casting is done
by checking if the `Dialect` implements `IsExtensibleDialect` or not.
#### Operation representation and registration
Operations are represented in mlir using the `AbstractOperation` class. They are
registered in dialects the same way operations defined in C++ are registered,
which is by calling `AbstractOperation::insert`.
The only difference is that a new `TypeID` needs to be created for each
operation, since operations are not represented by a C++ class. This is done
using a `TypeIDAllocator`, which can allocate a new unique `TypeID` at runtime.
#### Type representation and registration
Unlike operations, types need to define a C++ storage class that takes care of
type parameters. They also need to define another C++ class to access that
storage. `DynamicTypeStorage` defines the storage of types defined at runtime,
and `DynamicType` gives access to the storage, as well as defining useful
functions. A `DynamicTypeStorage` contains a list of `Attribute` type
parameters, as well as a pointer to the type definition.
Types are registered using the `Dialect::addType` method, which expect a
`TypeID` that is generated using a `TypeIDAllocator`. The type uniquer also
register the type with the given `TypeID`. This mean that we can reuse our
single `DynamicType` with different `TypeID` to represent the different types
defined at runtime.
Since the different types defined at runtime have different `TypeID`, it is not
possible to use `TypeID` to cast a `Type` into a `DynamicType`. Thus, similar to
`Dialect`, all `DynamicType` define a `IsDynamicTypeTrait`, so casting a `Type`
to a `DynamicType` boils down to querying the `IsDynamicTypeTrait` trait.

View file

@ -1,369 +0,0 @@
# Extensible dialects
This file documents the design and API of the extensible dialects. Extensible
dialects are dialects that can be extended with new operations and types defined
at runtime. This allows for users to define dialects via with meta-programming,
or from another language, without having to recompile C++ code.
[TOC]
## Usage
### Defining an extensible dialect
Dialects defined in C++ can be extended with new operations, types, etc., at
runtime by inheriting from `mlir::ExtensibleDialect` instead of `mlir::Dialect`
(note that `ExtensibleDialect` inherits from `Dialect`). The `ExtensibleDialect`
class contains the necessary fields and methods to extend the dialect at
runtime.
```c++
class MyDialect : public mlir::ExtensibleDialect {
...
}
```
For dialects defined in TableGen, this is done by setting the `isExtensible`
flag to `1`.
```tablegen
def Test_Dialect : Dialect {
let isExtensible = 1;
...
}
```
An extensible `Dialect` can be casted back to `ExtensibleDialect` using
`llvm::dyn_cast`, or `llvm::cast`:
```c++
if (auto extensibleDialect = llvm::dyn_cast<ExtensibleDialect>(dialect)) {
...
}
```
### Defining an operation at runtime
The `DynamicOpDefinition` class represents the definition of an operation
defined at runtime. It is created using the `DynamicOpDefinition::get`
functions. An operation defined at runtime must provide a name, a dialect in
which the operation will be registered in, an operation verifier. It may also
optionally define a custom parser and a printer, fold hook, and more.
```c++
// The operation name, without the dialect name prefix.
StringRef name = "my_operation_name";
// The dialect defining the operation.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// Operation verifier definition.
AbstractOperation::VerifyInvariantsFn verifyFn = [](Operation* op) {
// Logic for the operation verification.
...
}
// Parser function definition.
AbstractOperation::ParseAssemblyFn parseFn =
[](OpAsmParser &parser, OperationState &state) {
// Parse the operation, given that the name is already parsed.
...
};
// Printer function
auto printFn = [](Operation *op, OpAsmPrinter &printer) {
printer << op->getName();
// Print the operation, given that the name is already printed.
...
};
// General folder implementation, see AbstractOperation::foldHook for more
// information.
auto foldHookFn = [](Operation * op, ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &result) {
...
};
// Returns any canonicalization pattern rewrites that the operation
// supports, for use by the canonicalization pass.
auto getCanonicalizationPatterns =
[](RewritePatternSet &results, MLIRContext *context) {
...
}
// Definition of the operation.
std::unique_ptr<DynamicOpDefinition> opDef =
DynamicOpDefinition::get(name, dialect, std::move(verifyFn),
std::move(parseFn), std::move(printFn), std::move(foldHookFn),
std::move(getCanonicalizationPatterns));
```
Once the operation is defined, it can be registered by an `ExtensibleDialect`:
```c++
extensibleDialect->registerDynamicOperation(std::move(opDef));
```
Note that the `Dialect` given to the operation should be the one registering
the operation.
### Using an operation defined at runtime
It is possible to match on an operation defined at runtime using their names:
```c++
if (op->getName().getStringRef() == "my_dialect.my_dynamic_op") {
...
}
```
An operation defined at runtime can be created by instantiating an
`OperationState` with the operation name, and using it with a rewriter
(for instance a `PatternRewriter`) to create the operation.
```c++
OperationState state(location, "my_dialect.my_dynamic_op",
operands, resultTypes, attributes);
rewriter.createOperation(state);
```
### Defining a type at runtime
Contrary to types defined in C++ or in TableGen, types defined at runtime can
only have as argument a list of `Attribute`.
Similarily to operations, a type is defined at runtime using the class
`DynamicTypeDefinition`, which is created using the `DynamicTypeDefinition::get`
functions. A type definition requires a name, the dialect that will register the
type, and a parameter verifier. It can also define optionally a custom parser
and printer for the arguments (the type name is assumed to be already
parsed/printed).
```c++
// The type name, without the dialect name prefix.
StringRef name = "my_type_name";
// The dialect defining the type.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// The type verifier.
// A type defined at runtime has a list of attributes as parameters.
auto verifier = [](function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> args) {
...
};
// The type parameters parser.
auto parser = [](DialectAsmParser &parser,
llvm::SmallVectorImpl<Attribute> &parsedParams) {
...
};
// The type parameters printer.
auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) {
...
};
std::unique_ptr<DynamicTypeDefinition> typeDef =
DynamicTypeDefinition::get(std::move(name), std::move(dialect),
std::move(verifier), std::move(printer),
std::move(parser));
```
If the printer and the parser are ommited, a default parser and printer is
generated with the format `!dialect.typename<arg1, arg2, ..., argN>`.
The type can then be registered by the `ExtensibleDialect`:
```c++
dialect->registerDynamicType(std::move(typeDef));
```
### Parsing types defined at runtime in an extensible dialect
`parseType` methods generated by TableGen can parse types defined at runtime,
though overriden `parseType` methods need to add the necessary support for them.
```c++
Type MyDialect::parseType(DialectAsmParser &parser) const {
...
// The type name.
StringRef typeTag;
if (failed(parser.parseKeyword(&typeTag)))
return Type();
// Try to parse a dynamic type with 'typeTag' name.
Type dynType;
auto parseResult = parseOptionalDynamicType(typeTag, parser, dynType);
if (parseResult.hasValue()) {
if (succeeded(parseResult.getValue()))
return dynType;
return Type();
}
...
}
```
### Using a type defined at runtime
Dynamic types are instances of `DynamicType`. It is possible to get a dynamic
type with `DynamicType::get` and `ExtensibleDialect::lookupTypeDefinition`.
```c++
auto typeDef = extensibleDialect->lookupTypeDefinition("my_dynamic_type");
ArrayRef<Attribute> params = ...;
auto type = DynamicType::get(typeDef, params);
```
It is also possible to cast a `Type` known to be defined at runtime to a
`DynamicType`.
```c++
auto dynType = type.cast<DynamicType>();
auto typeDef = dynType.getTypeDef();
auto args = dynType.getParams();
```
### Defining an attribute at runtime
Similar to types defined at runtime, attributes defined at runtime can only have
as argument a list of `Attribute`.
Similarily to types, an attribute is defined at runtime using the class
`DynamicAttrDefinition`, which is created using the `DynamicAttrDefinition::get`
functions. An attribute definition requires a name, the dialect that will
register the attribute, and a parameter verifier. It can also define optionally
a custom parser and printer for the arguments (the attribute name is assumed to
be already parsed/printed).
```c++
// The attribute name, without the dialect name prefix.
StringRef name = "my_attribute_name";
// The dialect defining the attribute.
Dialect* dialect = ctx->getOrLoadDialect<MyDialect>();
// The attribute verifier.
// An attribute defined at runtime has a list of attributes as parameters.
auto verifier = [](function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> args) {
...
};
// The attribute parameters parser.
auto parser = [](DialectAsmParser &parser,
llvm::SmallVectorImpl<Attribute> &parsedParams) {
...
};
// The attribute parameters printer.
auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) {
...
};
std::unique_ptr<DynamicAttrDefinition> attrDef =
DynamicAttrDefinition::get(std::move(name), std::move(dialect),
std::move(verifier), std::move(printer),
std::move(parser));
```
If the printer and the parser are ommited, a default parser and printer is
generated with the format `!dialect.attrname<arg1, arg2, ..., argN>`.
The attribute can then be registered by the `ExtensibleDialect`:
```c++
dialect->registerDynamicAttr(std::move(typeDef));
```
### Parsing attributes defined at runtime in an extensible dialect
`parseAttribute` methods generated by TableGen can parse attributes defined at
runtime, though overriden `parseAttribute` methods need to add the necessary
support for them.
```c++
Attribute MyDialect::parseAttribute(DialectAsmParser &parser,
Type type) const override {
...
// The attribute name.
StringRef attrTag;
if (failed(parser.parseKeyword(&attrTag)))
return Attribute();
// Try to parse a dynamic attribute with 'attrTag' name.
Attribute dynAttr;
auto parseResult = parseOptionalDynamicAttr(attrTag, parser, dynAttr);
if (parseResult.hasValue()) {
if (succeeded(parseResult.getValue()))
return dynAttr;
return Attribute();
}
```
### Using an attribute defined at runtime
Similar to types, attributes defined at runtime are instances of `DynamicAttr`.
It is possible to get a dynamic attribute with `DynamicAttr::get` and
`ExtensibleDialect::lookupAttrDefinition`.
```c++
auto attrDef = extensibleDialect->lookupAttrDefinition("my_dynamic_attr");
ArrayRef<Attribute> params = ...;
auto attr = DynamicAttr::get(attrDef, params);
```
It is also possible to cast an `Attribute` known to be defined at runtime to a
`DynamicAttr`.
```c++
auto dynAttr = attr.cast<DynamicAttr>();
auto attrDef = dynAttr.getAttrDef();
auto args = dynAttr.getParams();
```
## Implementation details
### Extensible dialect
The role of extensible dialects is to own the necessary data for defined
operations and types. They also contain the necessary accessors to easily
access them.
In order to cast a `Dialect` back to an `ExtensibleDialect`, we implement the
`IsExtensibleDialect` interface to all `ExtensibleDialect`. The casting is done
by checking if the `Dialect` implements `IsExtensibleDialect` or not.
### Operation representation and registration
Operations are represented in mlir using the `AbstractOperation` class. They are
registered in dialects the same way operations defined in C++ are registered,
which is by calling `AbstractOperation::insert`.
The only difference is that a new `TypeID` needs to be created for each
operation, since operations are not represented by a C++ class. This is done
using a `TypeIDAllocator`, which can allocate a new unique `TypeID` at runtime.
### Type representation and registration
Unlike operations, types need to define a C++ storage class that takes care of
type parameters. They also need to define another C++ class to access that
storage. `DynamicTypeStorage` defines the storage of types defined at runtime,
and `DynamicType` gives access to the storage, as well as defining useful
functions. A `DynamicTypeStorage` contains a list of `Attribute` type
parameters, as well as a pointer to the type definition.
Types are registered using the `Dialect::addType` method, which expect a
`TypeID` that is generated using a `TypeIDAllocator`. The type uniquer also
register the type with the given `TypeID`. This mean that we can reuse our
single `DynamicType` with different `TypeID` to represent the different types
defined at runtime.
Since the different types defined at runtime have different `TypeID`, it is not
possible to use `TypeID` to cast a `Type` into a `DynamicType`. Thus, similar to
`Dialect`, all `DynamicType` define a `IsDynamicTypeTrait`, so casting a `Type`
to a `DynamicType` boils down to querying the `IsDynamicTypeTrait` trait.