llvm/flang/lib/semantics/resolve-names.cc

2263 lines
76 KiB
C++
Raw Normal View History

// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "resolve-names.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
#include "attr.h"
#include "rewrite-parse-tree.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
#include "scope.h"
#include "symbol.h"
#include "type.h"
#include "../parser/indirection.h"
#include "../parser/parse-tree-visitor.h"
#include "../parser/parse-tree.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
#include <list>
#include <memory>
#include <ostream>
#include <set>
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
#include <stack>
namespace Fortran::semantics {
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
using namespace parser::literals;
class MessageHandler;
static GenericSpec MapGenericSpec(const parser::GenericSpec &);
// ImplicitRules maps initial character of identifier to the DeclTypeSpec*
// representing the implicit type; nullptr if none.
class ImplicitRules {
public:
ImplicitRules(MessageHandler &messages);
bool isImplicitNoneType() const { return isImplicitNoneType_; }
bool isImplicitNoneExternal() const { return isImplicitNoneExternal_; }
void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
// Get the implicit type for identifiers starting with ch. May be null.
const DeclTypeSpec *GetType(char ch) const;
// Record the implicit type for this range of characters.
void SetType(const DeclTypeSpec &type, parser::Location lo, parser::Location,
bool isDefault = false);
// Apply the default implicit rules (if no IMPLICIT NONE).
void AddDefaultRules();
private:
static char Incr(char ch);
MessageHandler &messages_;
bool isImplicitNoneType_{false};
bool isImplicitNoneExternal_{false};
// map initial character of identifier to nullptr or its default type
std::map<char, const DeclTypeSpec> map_;
friend std::ostream &operator<<(std::ostream &, const ImplicitRules &);
friend void ShowImplicitRule(std::ostream &, const ImplicitRules &, char);
};
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
// Provide Post methods to collect attributes into a member variable.
class AttrsVisitor {
public:
void BeginAttrs();
Attrs GetAttrs();
Attrs EndAttrs();
void Post(const parser::LanguageBindingSpec &);
bool Pre(const parser::AccessSpec &);
bool Pre(const parser::IntentSpec &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
// Simple case: encountering CLASSNAME causes ATTRNAME to be set.
#define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
bool Pre(const parser::CLASSNAME &) { \
attrs_->set(Attr::ATTRNAME); \
return false; \
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
HANDLE_ATTR_CLASS(External, EXTERNAL)
HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
HANDLE_ATTR_CLASS(NoPass, NOPASS)
HANDLE_ATTR_CLASS(Optional, OPTIONAL)
HANDLE_ATTR_CLASS(Parameter, PARAMETER)
HANDLE_ATTR_CLASS(Pass, PASS)
HANDLE_ATTR_CLASS(Pointer, POINTER)
HANDLE_ATTR_CLASS(Protected, PROTECTED)
HANDLE_ATTR_CLASS(Save, SAVE)
HANDLE_ATTR_CLASS(Target, TARGET)
HANDLE_ATTR_CLASS(Value, VALUE)
HANDLE_ATTR_CLASS(Volatile, VOLATILE)
#undef HANDLE_ATTR_CLASS
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
protected:
std::optional<Attrs> attrs_;
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
std::string langBindingName_{""};
Attr AccessSpecToAttr(const parser::AccessSpec &x) {
switch (x.v) {
case parser::AccessSpec::Kind::Public: return Attr::PUBLIC;
case parser::AccessSpec::Kind::Private: return Attr::PRIVATE;
}
// unnecessary but g++ warns "control reaches end of non-void function"
parser::die("unreachable");
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
};
// Find and create types from declaration-type-spec nodes.
class DeclTypeSpecVisitor : public AttrsVisitor {
public:
using AttrsVisitor::Post;
using AttrsVisitor::Pre;
bool Pre(const parser::IntegerTypeSpec &);
bool Pre(const parser::IntrinsicTypeSpec::Logical &);
bool Pre(const parser::IntrinsicTypeSpec::Real &);
bool Pre(const parser::IntrinsicTypeSpec::Complex &);
bool Pre(const parser::IntrinsicTypeSpec::DoublePrecision &);
bool Pre(const parser::DeclarationTypeSpec::ClassStar &);
bool Pre(const parser::DeclarationTypeSpec::TypeStar &);
void Post(const parser::DeclarationTypeSpec::Type &);
void Post(const parser::DeclarationTypeSpec::Class &);
bool Pre(const parser::DeclarationTypeSpec::Record &);
bool Pre(const parser::DerivedTypeSpec &);
void Post(const parser::TypeParamSpec &);
bool Pre(const parser::TypeParamValue &);
void Post(const parser::StructureConstructor &);
bool Pre(const parser::AllocateStmt &);
void Post(const parser::AllocateStmt &);
bool Pre(const parser::TypeGuardStmt &);
void Post(const parser::TypeGuardStmt &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
protected:
std::unique_ptr<DeclTypeSpec> &GetDeclTypeSpec();
void BeginDeclTypeSpec();
void EndDeclTypeSpec();
std::unique_ptr<DerivedTypeSpec> derivedTypeSpec_;
std::unique_ptr<ParamValue> typeParamValue_;
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
private:
bool expectDeclTypeSpec_{false}; // should only see decl-type-spec when true
std::unique_ptr<DeclTypeSpec> declTypeSpec_;
void MakeIntrinsic(const IntrinsicTypeSpec &intrinsicTypeSpec);
void SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
static KindParamValue GetKindParamValue(
const std::optional<parser::KindSelector> &kind);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
};
// Track statement source locations and save messages.
class MessageHandler {
public:
using Message = parser::Message;
using MessageFixedText = parser::MessageFixedText;
using MessageFormattedText = parser::MessageFormattedText;
const parser::Messages &messages() const { return messages_; }
template<typename T> bool Pre(const parser::Statement<T> &x) {
currStmtSource_ = &x.source;
return true;
}
template<typename T> void Post(const parser::Statement<T> &) {
currStmtSource_ = nullptr;
}
const SourceName *currStmtSource() { return currStmtSource_; }
// Add a message to the messages to be emitted.
Message &Say(Message &&);
// Emit a message associated with the current statement source.
Message &Say(MessageFixedText &&);
// Emit a message about a SourceName or parser::Name
Message &Say(const SourceName &, MessageFixedText &&);
Message &Say(const parser::Name &, MessageFixedText &&);
// Emit a formatted message associated with a source location.
Message &Say(const SourceName &, MessageFixedText &&, const std::string &);
Message &Say(const SourceName &, MessageFixedText &&, const SourceName &,
const SourceName &);
void SayAlreadyDeclared(const SourceName &, const Symbol &);
// Emit a message and attached message with two names and locations.
void Say2(const SourceName &, MessageFixedText &&, const SourceName &,
MessageFixedText &&);
private:
// Where messages are emitted:
parser::Messages messages_;
// Source location of current statement; null if not in a statement
const SourceName *currStmtSource_{nullptr};
};
// Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
class ImplicitRulesVisitor : public DeclTypeSpecVisitor,
public virtual MessageHandler {
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
public:
using DeclTypeSpecVisitor::Post;
using DeclTypeSpecVisitor::Pre;
using MessageHandler::Post;
using MessageHandler::Pre;
using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
void Post(const parser::ParameterStmt &);
bool Pre(const parser::ImplicitStmt &);
bool Pre(const parser::LetterSpec &);
bool Pre(const parser::ImplicitSpec &);
void Post(const parser::ImplicitSpec &);
ImplicitRules &implicitRules() { return implicitRules_.top(); }
const ImplicitRules &implicitRules() const { return implicitRules_.top(); }
bool isImplicitNoneType() const {
return implicitRules().isImplicitNoneType();
}
bool isImplicitNoneExternal() const {
return implicitRules().isImplicitNoneExternal();
}
protected:
void PushScope();
void PopScope();
void CopyImplicitRules(); // copy from parent into this scope
private:
// implicit rules in effect for current scope
std::stack<ImplicitRules, std::list<ImplicitRules>> implicitRules_;
// previous occurrence of these kinds of statements:
const SourceName *prevImplicit_{nullptr};
const SourceName *prevImplicitNone_{nullptr};
const SourceName *prevImplicitNoneType_{nullptr};
const SourceName *prevParameterStmt_{nullptr};
bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
};
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
// Track array specifications. They can occur in AttrSpec, EntityDecl,
// ObjectDecl, DimensionStmt, CommonBlockObject, or BasedPointerStmt.
// 1. INTEGER, DIMENSION(10) :: x
// 2. INTEGER :: x(10)
// 3. ALLOCATABLE :: x(:)
// 4. DIMENSION :: x(10)
// 5. TODO: COMMON x(10)
// 6. TODO: BasedPointerStmt
class ArraySpecVisitor {
public:
bool Pre(const parser::ArraySpec &);
void Post(const parser::AttrSpec &) { PostAttrSpec(); }
void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
bool Pre(const parser::DeferredShapeSpecList &);
bool Pre(const parser::AssumedShapeSpec &);
bool Pre(const parser::ExplicitShapeSpec &);
bool Pre(const parser::AssumedImpliedSpec &);
bool Pre(const parser::AssumedRankSpec &);
protected:
const ArraySpec &arraySpec();
void BeginArraySpec();
void EndArraySpec();
void ClearArraySpec() { arraySpec_.clear(); }
private:
// arraySpec_ is populated by any ArraySpec
ArraySpec arraySpec_;
// When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
// into attrArraySpec_
ArraySpec attrArraySpec_;
void PostAttrSpec();
Bound GetBound(const parser::SpecificationExpr &);
};
// Manage a stack of Scopes
class ScopeHandler : public virtual ImplicitRulesVisitor {
public:
ScopeHandler() { PushScope(Scope::globalScope); }
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
Scope &CurrScope() { return *scopes_.top(); }
void PushScope(Scope &scope);
void PopScope();
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
Symbol *FindSymbol(const SourceName &name);
void EraseSymbol(const SourceName &name);
// Helpers to make a Symbol in the current scope
template<typename D>
Symbol &MakeSymbol(const SourceName &name, const Attrs &attrs, D &&details) {
auto *symbol = FindSymbol(name);
if (!symbol) {
const auto pair = CurrScope().try_emplace(name, attrs, details);
CHECK(pair.second); // name was not found, so must be able to add
return pair.first->second;
}
symbol->add_occurrence(name);
if (symbol->CanReplaceDetails(details)) {
// update the existing symbol
symbol->attrs() |= attrs;
symbol->set_details(details);
return *symbol;
} else if (std::is_same<UnknownDetails, D>::value) {
symbol->attrs() |= attrs;
return *symbol;
} else {
SayAlreadyDeclared(name, *symbol);
// replace the old symbols with a new one with correct details
EraseSymbol(symbol->name());
return MakeSymbol(name, attrs, details);
}
}
template<typename D>
Symbol &MakeSymbol(
const parser::Name &name, const Attrs &attrs, D &&details) {
return MakeSymbol(name.source, attrs, std::move(details));
}
template<typename D>
Symbol &MakeSymbol(const parser::Name &name, D &&details) {
return MakeSymbol(name, Attrs(), details);
}
Symbol &MakeSymbol(const SourceName &name, Attrs attrs = Attrs{}) {
return MakeSymbol(name, attrs, UnknownDetails());
}
protected:
// When subpNamesOnly_ is set we are only collecting procedure names.
// Create symbols with SubprogramNameDetails of the given kind.
std::optional<SubprogramKind> subpNamesOnly_;
private:
// Stack of containing scopes; memory referenced is owned by parent scopes
std::stack<Scope *, std::list<Scope *>> scopes_;
// On leaving a scope, add implicit types if appropriate.
void ApplyImplicitRules();
};
class ModuleVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::Module &);
void Post(const parser::Module &);
bool Pre(const parser::AccessStmt &);
bool Pre(const parser::Only &);
bool Pre(const parser::Rename::Names &);
bool Pre(const parser::UseStmt &);
void Post(const parser::UseStmt &);
private:
// The default access spec for this module.
Attr defaultAccess_{Attr::PUBLIC};
// The location of the last AccessStmt without access-ids, if any.
const SourceName *prevAccessStmt_{nullptr};
// The scope of the module during a UseStmt
const Scope *useModuleScope_{nullptr};
void SetAccess(const parser::Name &, Attr);
void ApplyDefaultAccess();
void AddUse(const parser::Rename::Names &);
void AddUse(const parser::Name &);
// Record a use from useModuleScope_ of useName as localName. location is
// where it occurred (either the module or the rename) for error reporting.
void AddUse(const SourceName &location, const SourceName &localName,
const SourceName &useName);
};
class InterfaceVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::InterfaceStmt &);
void Post(const parser::InterfaceStmt &);
void Post(const parser::EndInterfaceStmt &);
bool Pre(const parser::GenericSpec &);
bool Pre(const parser::TypeBoundGenericStmt &);
void Post(const parser::TypeBoundGenericStmt &);
bool Pre(const parser::ProcedureStmt &);
void Post(const parser::GenericStmt &);
bool inInterfaceBlock() const { return inInterfaceBlock_; }
bool isGeneric() const { return genericSymbol_ != nullptr; }
bool isAbstract() const { return isAbstract_; }
protected:
// Add name or symbol to the generic we are currently processing
void AddToGeneric(const parser::Name &name, bool expectModuleProc = false);
void AddToGeneric(const Symbol &symbol);
// Add to generic the symbol for the subprogram with the same name
void SetSpecificInGeneric(Symbol &&symbol);
private:
bool inInterfaceBlock_{false}; // set when in interface block
bool isAbstract_{false}; // set when in abstract interface block
Symbol *genericSymbol_{nullptr}; // set when in generic interface block
};
class SubprogramVisitor : public InterfaceVisitor {
public:
bool Pre(const parser::StmtFunctionStmt &);
void Post(const parser::StmtFunctionStmt &);
void Post(const parser::SubroutineStmt &);
bool Pre(const parser::FunctionStmt &);
void Post(const parser::FunctionStmt &);
bool Pre(const parser::SubroutineSubprogram &);
void Post(const parser::SubroutineSubprogram &);
bool Pre(const parser::FunctionSubprogram &);
void Post(const parser::FunctionSubprogram &);
bool Pre(const parser::InterfaceBody::Subroutine &);
void Post(const parser::InterfaceBody::Subroutine &);
bool Pre(const parser::InterfaceBody::Function &);
void Post(const parser::InterfaceBody::Function &);
bool Pre(const parser::Suffix &);
protected:
// Set when we see a stmt function that is really an array element assignment
bool badStmtFuncFound_{false};
private:
// Function result name from parser::Suffix, if any.
const parser::Name *funcResultName_{nullptr};
bool BeginSubprogram(const parser::Name &, Symbol::Flag,
const std::optional<parser::InternalSubprogramPart> &);
void EndSubprogram();
// Create a subprogram symbol in the current scope and push a new scope.
Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag);
Symbol *GetSpecificFromGeneric(const parser::Name &);
};
class DeclarationVisitor : public ArraySpecVisitor,
public virtual ScopeHandler {
public:
using ArraySpecVisitor::Post;
using ArraySpecVisitor::Pre;
void Post(const parser::EntityDecl &);
void Post(const parser::ObjectDecl &);
bool Pre(const parser::AsynchronousStmt &);
bool Pre(const parser::ContiguousStmt &);
bool Pre(const parser::ExternalStmt &);
bool Pre(const parser::IntrinsicStmt &);
bool Pre(const parser::OptionalStmt &);
bool Pre(const parser::ProtectedStmt &);
bool Pre(const parser::ValueStmt &);
bool Pre(const parser::VolatileStmt &);
bool Pre(const parser::AllocatableStmt &) {
objectDeclAttr_ = Attr::ALLOCATABLE;
return true;
}
void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
bool Pre(const parser::TargetStmt &x) {
objectDeclAttr_ = Attr::TARGET;
return true;
}
void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
void Post(const parser::DimensionStmt::Declaration &);
bool Pre(const parser::TypeDeclarationStmt &) { return BeginDecl(); }
void Post(const parser::TypeDeclarationStmt &) { EndDecl(); }
bool Pre(const parser::DerivedTypeDef &x);
void Post(const parser::DerivedTypeDef &x);
bool Pre(const parser::DerivedTypeStmt &x);
void Post(const parser::DerivedTypeStmt &x);
bool Pre(const parser::TypeAttrSpec::Extends &x);
bool Pre(const parser::PrivateStmt &x);
bool Pre(const parser::SequenceStmt &x);
bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
void Post(const parser::ComponentDefStmt &) { EndDecl(); }
void Post(const parser::ComponentDecl &x);
bool Pre(const parser::ProcedureDeclarationStmt &);
void Post(const parser::ProcedureDeclarationStmt &);
bool Pre(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcInterface &x);
void Post(const parser::ProcDecl &x);
bool Pre(const parser::FinalProcedureStmt &x);
protected:
bool BeginDecl();
void EndDecl();
private:
// The attribute corresponding to the statement containing an ObjectDecl
std::optional<Attr> objectDeclAttr_;
// In a DerivedTypeDef, this is data collected for it
std::unique_ptr<DerivedTypeDef::Data> derivedTypeData_;
// In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
// the interface name, if any.
const SourceName *interfaceName_{nullptr};
// Handle a statement that sets an attribute on a list of names.
bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
void DeclareObjectEntity(const parser::Name &, Attrs);
void DeclareProcEntity(const parser::Name &, Attrs, ProcInterface &&);
// Set the type of an entity or report an error.
void SetType(
const SourceName &name, Symbol &symbol, const DeclTypeSpec &type);
// Declare an object or procedure entity.
template<typename T>
Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
Symbol &symbol{MakeSymbol(name.source, attrs)};
if (symbol.has<UnknownDetails>()) {
symbol.set_details(T{});
} else if (auto *details = symbol.detailsIf<EntityDetails>()) {
if (!std::is_same<EntityDetails, T>::value) {
symbol.set_details(T(*details));
}
}
if (T *details = symbol.detailsIf<T>()) {
// OK
} else if (std::is_same<EntityDetails, T>::value &&
(symbol.has<ObjectEntityDetails>() ||
symbol.has<ProcEntityDetails>())) {
// OK
} else if (UseDetails *details = symbol.detailsIf<UseDetails>()) {
Say(name.source,
"'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
name.source, details->module().name());
} else if (auto *details = symbol.detailsIf<SubprogramNameDetails>()) {
if (details->kind() == SubprogramKind::Module) {
Say2(name.source,
"Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
symbol.name(), "Module procedure definition"_en_US);
} else if (details->kind() == SubprogramKind::Internal) {
Say2(name.source,
"Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
symbol.name(), "Internal procedure definition"_en_US);
} else {
CHECK(!"unexpected kind");
}
} else {
SayAlreadyDeclared(name.source, symbol);
}
return symbol;
}
};
// Walk the parse tree and resolve names to symbols.
class ResolveNamesVisitor : public ModuleVisitor,
public SubprogramVisitor,
public DeclarationVisitor {
public:
using ArraySpecVisitor::Post;
using ArraySpecVisitor::Pre;
using DeclarationVisitor::Post;
using DeclarationVisitor::Pre;
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
using InterfaceVisitor::Post;
using InterfaceVisitor::Pre;
using ModuleVisitor::Post;
using ModuleVisitor::Pre;
using SubprogramVisitor::Post;
using SubprogramVisitor::Pre;
// Default action for a parse tree node is to visit children.
template<typename T> bool Pre(const T &) { return true; }
template<typename T> void Post(const T &) {}
bool Pre(const parser::CommonBlockObject &);
void Post(const parser::CommonBlockObject &);
bool Pre(const parser::TypeParamDefStmt &);
void Post(const parser::TypeParamDefStmt &);
bool Pre(const parser::TypeDeclarationStmt &) { return BeginDecl(); }
void Post(const parser::TypeDeclarationStmt &) { EndDecl(); }
void Post(const parser::ComponentDecl &);
bool Pre(const parser::PrefixSpec &);
void Post(const parser::SpecificationPart &);
bool Pre(const parser::MainProgram &);
void Post(const parser::EndProgramStmt &);
void Post(const parser::Program &);
void Post(const parser::Expr &x) { CheckImplicitSymbol(GetVariableName(x)); }
void Post(const parser::Variable &x) {
CheckImplicitSymbol(GetVariableName(x));
}
void Post(const parser::ProcedureDesignator &);
bool Pre(const parser::FunctionReference &);
void Post(const parser::FunctionReference &);
bool Pre(const parser::CallStmt &);
void Post(const parser::CallStmt &);
private:
// Kind of procedure we are expecting to see in a ProcedureDesignator
std::optional<Symbol::Flag> expectedProcFlag_;
const parser::Name *GetVariableName(const parser::DataRef &);
const parser::Name *GetVariableName(const parser::Designator &);
const parser::Name *GetVariableName(const parser::Expr &);
const parser::Name *GetVariableName(const parser::Variable &);
void CheckImplicitSymbol(const parser::Name *);
bool CheckUseError(const SourceName &, const Symbol &);
};
// ImplicitRules implementation
ImplicitRules::ImplicitRules(MessageHandler &messages) : messages_{messages} {}
const DeclTypeSpec *ImplicitRules::GetType(char ch) const {
auto it = map_.find(ch);
return it != map_.end() ? &it->second : nullptr;
}
// isDefault is set when we are applying the default rules, so it is not
// an error if the type is already set.
void ImplicitRules::SetType(const DeclTypeSpec &type, parser::Location lo,
parser::Location hi, bool isDefault) {
for (char ch = *lo; ch; ch = ImplicitRules::Incr(ch)) {
auto res = map_.emplace(ch, type);
if (!res.second && !isDefault) {
messages_.Say(lo,
"More than one implicit type specified for '%s'"_err_en_US,
std::string(1, ch));
}
if (ch == *hi) {
break;
}
}
}
void ImplicitRules::AddDefaultRules() {
SetType(DeclTypeSpec::MakeIntrinsic(IntegerTypeSpec::Make()), "i", "n", true);
SetType(DeclTypeSpec::MakeIntrinsic(RealTypeSpec::Make()), "a", "z", true);
}
// Return the next char after ch in a way that works for ASCII or EBCDIC.
// Return '\0' for the char after 'z'.
char ImplicitRules::Incr(char ch) {
switch (ch) {
case 'i': return 'j';
case 'r': return 's';
case 'z': return '\0';
default: return ch + 1;
}
}
std::ostream &operator<<(std::ostream &o, const ImplicitRules &implicitRules) {
o << "ImplicitRules:\n";
for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
ShowImplicitRule(o, implicitRules, ch);
}
ShowImplicitRule(o, implicitRules, '_');
ShowImplicitRule(o, implicitRules, '$');
ShowImplicitRule(o, implicitRules, '@');
return o;
}
void ShowImplicitRule(
std::ostream &o, const ImplicitRules &implicitRules, char ch) {
auto it = implicitRules.map_.find(ch);
if (it != implicitRules.map_.end()) {
o << " " << ch << ": " << it->second << '\n';
}
}
// AttrsVisitor implementation
void AttrsVisitor::BeginAttrs() {
CHECK(!attrs_);
attrs_ = std::make_optional<Attrs>();
}
Attrs AttrsVisitor::GetAttrs() {
CHECK(attrs_);
return *attrs_;
}
Attrs AttrsVisitor::EndAttrs() {
CHECK(attrs_);
Attrs result{*attrs_};
attrs_.reset();
return result;
}
void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
attrs_->set(Attr::BIND_C);
if (x.v) {
// TODO: set langBindingName_ from ScalarDefaultCharConstantExpr
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
}
bool AttrsVisitor::Pre(const parser::AccessSpec &x) {
attrs_->set(AccessSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
switch (x.v) {
case parser::IntentSpec::Intent::In: attrs_->set(Attr::INTENT_IN); break;
case parser::IntentSpec::Intent::Out: attrs_->set(Attr::INTENT_OUT); break;
case parser::IntentSpec::Intent::InOut:
attrs_->set(Attr::INTENT_IN);
attrs_->set(Attr::INTENT_OUT);
break;
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
return false;
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
// DeclTypeSpecVisitor implementation
std::unique_ptr<DeclTypeSpec> &DeclTypeSpecVisitor::GetDeclTypeSpec() {
return declTypeSpec_;
}
void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
CHECK(!expectDeclTypeSpec_);
expectDeclTypeSpec_ = true;
}
void DeclTypeSpecVisitor::EndDeclTypeSpec() {
CHECK(expectDeclTypeSpec_);
expectDeclTypeSpec_ = false;
declTypeSpec_.reset();
}
bool DeclTypeSpecVisitor::Pre(const parser::DeclarationTypeSpec::ClassStar &x) {
SetDeclTypeSpec(DeclTypeSpec::MakeClassStar());
return false;
}
bool DeclTypeSpecVisitor::Pre(const parser::DeclarationTypeSpec::TypeStar &x) {
SetDeclTypeSpec(DeclTypeSpec::MakeTypeStar());
return false;
}
bool DeclTypeSpecVisitor::Pre(const parser::DerivedTypeSpec &x) {
CHECK(!derivedTypeSpec_);
derivedTypeSpec_ =
std::make_unique<DerivedTypeSpec>(std::get<parser::Name>(x.t).ToString());
return true;
}
void DeclTypeSpecVisitor::Post(const parser::TypeParamSpec &x) {
if (const auto &keyword = std::get<std::optional<parser::Keyword>>(x.t)) {
derivedTypeSpec_->AddParamValue(keyword->v.ToString(), *typeParamValue_);
} else {
derivedTypeSpec_->AddParamValue(*typeParamValue_);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
typeParamValue_.reset();
}
bool DeclTypeSpecVisitor::Pre(const parser::TypeParamValue &x) {
typeParamValue_ = std::make_unique<ParamValue>(std::visit(
parser::visitors{
// TODO: create IntExpr from ScalarIntExpr
[&](const parser::ScalarIntExpr &x) { return Bound{IntExpr{}}; },
[&](const parser::Star &x) { return Bound::ASSUMED; },
[&](const parser::TypeParamValue::Deferred &x) {
return Bound::DEFERRED;
},
},
x.u));
return false;
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::Type &) {
SetDeclTypeSpec(
DeclTypeSpec::MakeTypeDerivedType(std::move(derivedTypeSpec_)));
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::Class &) {
SetDeclTypeSpec(
DeclTypeSpec::MakeClassDerivedType(std::move(derivedTypeSpec_)));
}
bool DeclTypeSpecVisitor::Pre(const parser::DeclarationTypeSpec::Record &x) {
// TODO
return true;
}
void DeclTypeSpecVisitor::Post(const parser::StructureConstructor &) {
// TODO: StructureConstructor
derivedTypeSpec_.reset();
}
bool DeclTypeSpecVisitor::Pre(const parser::AllocateStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclTypeSpecVisitor::Post(const parser::AllocateStmt &) {
// TODO: AllocateStmt
EndDeclTypeSpec();
derivedTypeSpec_.reset();
}
bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
// TODO: TypeGuardStmt
EndDeclTypeSpec();
derivedTypeSpec_.reset();
}
bool DeclTypeSpecVisitor::Pre(const parser::IntegerTypeSpec &x) {
MakeIntrinsic(IntegerTypeSpec::Make(GetKindParamValue(x.v)));
return false;
}
bool DeclTypeSpecVisitor::Pre(const parser::IntrinsicTypeSpec::Logical &x) {
MakeIntrinsic(LogicalTypeSpec::Make(GetKindParamValue(x.kind)));
return false;
}
bool DeclTypeSpecVisitor::Pre(const parser::IntrinsicTypeSpec::Real &x) {
MakeIntrinsic(RealTypeSpec::Make(GetKindParamValue(x.kind)));
return false;
}
bool DeclTypeSpecVisitor::Pre(const parser::IntrinsicTypeSpec::Complex &x) {
MakeIntrinsic(ComplexTypeSpec::Make(GetKindParamValue(x.kind)));
return false;
}
bool DeclTypeSpecVisitor::Pre(
const parser::IntrinsicTypeSpec::DoublePrecision &) {
CHECK(!"TODO: double precision");
return false;
}
void DeclTypeSpecVisitor::MakeIntrinsic(
const IntrinsicTypeSpec &intrinsicTypeSpec) {
SetDeclTypeSpec(DeclTypeSpec::MakeIntrinsic(intrinsicTypeSpec));
}
// Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
// and save it in declTypeSpec_.
void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) {
CHECK(expectDeclTypeSpec_);
CHECK(!declTypeSpec_);
declTypeSpec_ = std::make_unique<DeclTypeSpec>(declTypeSpec);
}
KindParamValue DeclTypeSpecVisitor::GetKindParamValue(
const std::optional<parser::KindSelector> &kind) {
if (kind) {
if (auto *intExpr = std::get_if<parser::ScalarIntConstantExpr>(&kind->u)) {
const parser::Expr &expr{*intExpr->thing.thing.thing};
if (auto *lit = std::get_if<parser::LiteralConstant>(&expr.u)) {
if (auto *intLit = std::get_if<parser::IntLiteralConstant>(&lit->u)) {
return KindParamValue{
IntConst::Make(std::get<std::uint64_t>(intLit->t))};
}
}
CHECK(!"TODO: constant evaluation");
} else {
CHECK(!"TODO: translate star-size to kind");
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
return KindParamValue{};
}
// MessageHandler implementation
MessageHandler::Message &MessageHandler::Say(Message &&msg) {
return messages_.Put(std::move(msg));
}
MessageHandler::Message &MessageHandler::Say(MessageFixedText &&msg) {
CHECK(currStmtSource_);
return Say(Message{*currStmtSource_, std::move(msg)});
}
MessageHandler::Message &MessageHandler::Say(
const SourceName &name, MessageFixedText &&msg) {
return Say(name, std::move(msg), name.ToString());
}
MessageHandler::Message &MessageHandler::Say(
const parser::Name &name, MessageFixedText &&msg) {
return Say(name.source, std::move(msg), name.ToString());
}
MessageHandler::Message &MessageHandler::Say(const SourceName &location,
MessageFixedText &&msg, const std::string &arg1) {
return Say(Message{location, MessageFormattedText{msg, arg1.c_str()}});
}
MessageHandler::Message &MessageHandler::Say(const SourceName &location,
MessageFixedText &&msg, const SourceName &arg1, const SourceName &arg2) {
return Say(Message{location,
MessageFormattedText{
msg, arg1.ToString().c_str(), arg2.ToString().c_str()}});
}
void MessageHandler::SayAlreadyDeclared(
const SourceName &name, const Symbol &prev) {
Say2(name, "'%s' is already declared in this scoping unit"_err_en_US,
prev.name(), "Previous declaration of '%s'"_en_US);
}
void MessageHandler::Say2(const SourceName &name1, MessageFixedText &&msg1,
const SourceName &name2, MessageFixedText &&msg2) {
Say(name1, std::move(msg1))
.Attach(name2, MessageFormattedText{msg2, name2.ToString().data()});
}
// ImplicitRulesVisitor implementation
void ImplicitRulesVisitor::Post(const parser::ParameterStmt &x) {
prevParameterStmt_ = currStmtSource();
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
bool res = std::visit(
parser::visitors{
[&](const std::list<ImplicitNoneNameSpec> &x) {
return HandleImplicitNone(x);
},
[&](const std::list<parser::ImplicitSpec> &x) {
if (prevImplicitNoneType_) {
Say("IMPLICIT statement after IMPLICIT NONE or "
"IMPLICIT NONE(TYPE) statement"_err_en_US);
return false;
}
return true;
},
},
x.u);
prevImplicit_ = currStmtSource();
return res;
}
bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
auto loLoc = std::get<parser::Location>(x.t);
auto hiLoc = loLoc;
if (auto hiLocOpt = std::get<std::optional<parser::Location>>(x.t)) {
hiLoc = *hiLocOpt;
if (*hiLoc < *loLoc) {
Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
std::string(hiLoc, 1), std::string(loLoc, 1));
return false;
}
}
implicitRules().SetType(*GetDeclTypeSpec(), loLoc, hiLoc);
return false;
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
BeginDeclTypeSpec();
return true;
}
void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
EndDeclTypeSpec();
}
void ImplicitRulesVisitor::PushScope() {
implicitRules_.push(ImplicitRules(*this));
prevImplicit_ = nullptr;
prevImplicitNone_ = nullptr;
prevImplicitNoneType_ = nullptr;
prevParameterStmt_ = nullptr;
}
void ImplicitRulesVisitor::CopyImplicitRules() {
implicitRules_.pop();
implicitRules_.push(ImplicitRules(implicitRules_.top()));
}
void ImplicitRulesVisitor::PopScope() { implicitRules_.pop(); }
// TODO: for all of these errors, reference previous statement too
bool ImplicitRulesVisitor::HandleImplicitNone(
const std::list<ImplicitNoneNameSpec> &nameSpecs) {
if (prevImplicitNone_ != nullptr) {
Say("More than one IMPLICIT NONE statement"_err_en_US);
Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
return false;
}
if (prevParameterStmt_ != nullptr) {
Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
return false;
}
prevImplicitNone_ = currStmtSource();
if (nameSpecs.empty()) {
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
return false;
}
} else {
int sawType{0};
int sawExternal{0};
for (const auto noneSpec : nameSpecs) {
switch (noneSpec) {
case ImplicitNoneNameSpec::External:
implicitRules().set_isImplicitNoneExternal(true);
++sawExternal;
break;
case ImplicitNoneNameSpec::Type:
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
return false;
}
++sawType;
break;
}
}
if (sawType > 1) {
Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
if (sawExternal > 1) {
Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
}
return true;
}
// ArraySpecVisitor implementation
bool ArraySpecVisitor::Pre(const parser::ArraySpec &x) {
CHECK(arraySpec_.empty());
return true;
}
bool ArraySpecVisitor::Pre(const parser::DeferredShapeSpecList &x) {
for (int i = 0; i < x.v; ++i) {
arraySpec_.push_back(ShapeSpec::MakeDeferred());
}
return false;
}
bool ArraySpecVisitor::Pre(const parser::AssumedShapeSpec &x) {
const auto &lb = x.v;
arraySpec_.push_back(
lb ? ShapeSpec::MakeAssumed(GetBound(*lb)) : ShapeSpec::MakeAssumed());
return false;
}
bool ArraySpecVisitor::Pre(const parser::ExplicitShapeSpec &x) {
const auto &lb = std::get<std::optional<parser::SpecificationExpr>>(x.t);
const auto &ub = GetBound(std::get<parser::SpecificationExpr>(x.t));
arraySpec_.push_back(lb ? ShapeSpec::MakeExplicit(GetBound(*lb), ub)
: ShapeSpec::MakeExplicit(ub));
return false;
}
bool ArraySpecVisitor::Pre(const parser::AssumedImpliedSpec &x) {
const auto &lb = x.v;
arraySpec_.push_back(
lb ? ShapeSpec::MakeImplied(GetBound(*lb)) : ShapeSpec::MakeImplied());
return false;
}
bool ArraySpecVisitor::Pre(const parser::AssumedRankSpec &) {
arraySpec_.push_back(ShapeSpec::MakeAssumedRank());
return false;
}
const ArraySpec &ArraySpecVisitor::arraySpec() {
return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
}
void ArraySpecVisitor::BeginArraySpec() {
CHECK(arraySpec_.empty());
CHECK(attrArraySpec_.empty());
}
void ArraySpecVisitor::EndArraySpec() {
CHECK(arraySpec_.empty());
attrArraySpec_.clear();
}
void ArraySpecVisitor::PostAttrSpec() {
if (!arraySpec_.empty()) {
// Example: integer, dimension(<1>) :: x(<2>)
// This saves <1> in attrArraySpec_ so we can process <2> into arraySpec_
CHECK(attrArraySpec_.empty());
attrArraySpec_.splice(attrArraySpec_.cbegin(), arraySpec_);
CHECK(arraySpec_.empty());
}
}
Bound ArraySpecVisitor::GetBound(const parser::SpecificationExpr &x) {
return Bound(IntExpr{}); // TODO: convert x.v to IntExpr
}
// ScopeHandler implementation
void ScopeHandler::PushScope(Scope &scope) {
scopes_.push(&scope);
ImplicitRulesVisitor::PushScope();
}
void ScopeHandler::PopScope() {
ApplyImplicitRules();
scopes_.pop();
ImplicitRulesVisitor::PopScope();
}
Symbol *ScopeHandler::FindSymbol(const SourceName &name) {
const auto &it = CurrScope().find(name);
if (it == CurrScope().end()) {
return nullptr;
} else {
return &it->second;
}
}
void ScopeHandler::EraseSymbol(const SourceName &name) {
CurrScope().erase(name);
}
void ScopeHandler::ApplyImplicitRules() {
if (!isImplicitNoneType()) {
implicitRules().AddDefaultRules();
for (auto &pair : CurrScope()) {
Symbol &symbol = pair.second;
if (symbol.has<UnknownDetails>()) {
symbol.set_details(ObjectEntityDetails{});
} else if (auto *details = symbol.detailsIf<EntityDetails>()) {
symbol.set_details(ObjectEntityDetails{*details});
}
if (auto *details = symbol.detailsIf<ObjectEntityDetails>()) {
if (!details->type()) {
const auto &name = pair.first;
if (const auto *type = implicitRules().GetType(name.begin()[0])) {
details->set_type(*type);
} else {
Say(name, "No explicit type declared for '%s'"_err_en_US);
}
}
}
}
}
}
// ModuleVisitor implementation
bool ModuleVisitor::Pre(const parser::Only &x) {
std::visit(
parser::visitors{
[&](const parser::Indirection<parser::GenericSpec> &generic) {
std::visit(
parser::visitors{
[&](const parser::Name &name) { AddUse(name); },
[](const auto &) { parser::die("TODO: GenericSpec"); },
},
generic->u);
},
[&](const parser::Name &name) { AddUse(name); },
[&](const parser::Rename &rename) {
std::visit(
parser::visitors{
[&](const parser::Rename::Names &names) { AddUse(names); },
[&](const parser::Rename::Operators &ops) {
parser::die("TODO: Rename::Operators");
},
},
rename.u);
},
},
x.u);
return false;
}
bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
AddUse(x);
return false;
}
// Set useModuleScope_ to the Scope of the module being used.
bool ModuleVisitor::Pre(const parser::UseStmt &x) {
// x.nature = UseStmt::ModuleNature::Intrinsic or Non_Intrinsic
const auto it = Scope::globalScope.find(x.moduleName.source);
if (it == Scope::globalScope.end()) {
Say(x.moduleName, "Module '%s' not found"_err_en_US);
return false;
}
const auto *details = it->second.detailsIf<ModuleDetails>();
if (!details) {
Say(x.moduleName, "'%s' is not a module"_err_en_US);
return false;
}
useModuleScope_ = details->scope();
CHECK(useModuleScope_);
return true;
}
void ModuleVisitor::Post(const parser::UseStmt &x) {
if (const auto *list = std::get_if<std::list<parser::Rename>>(&x.u)) {
// Not a use-only: collect the names that were used in renames,
// then add a use for each public name that was not renamed.
std::set<SourceName> useNames;
for (const auto &rename : *list) {
std::visit(
parser::visitors{
[&](const parser::Rename::Names &names) {
useNames.insert(std::get<1>(names.t).source);
},
[&](const parser::Rename::Operators &ops) {
CHECK(!"TODO: Rename::Operators");
},
},
rename.u);
}
const SourceName &moduleName{x.moduleName.source};
for (const auto &pair : *useModuleScope_) {
const Symbol &symbol{pair.second};
if (symbol.attrs().test(Attr::PUBLIC) &&
!symbol.detailsIf<ModuleDetails>()) {
const SourceName &name{symbol.name()};
if (useNames.count(name) == 0) {
AddUse(moduleName, name, name);
}
}
}
}
useModuleScope_ = nullptr;
}
void ModuleVisitor::AddUse(const parser::Rename::Names &names) {
const SourceName &useName{std::get<0>(names.t).source};
const SourceName &localName{std::get<1>(names.t).source};
AddUse(useName, useName, localName);
}
void ModuleVisitor::AddUse(const parser::Name &useName) {
AddUse(useName.source, useName.source, useName.source);
}
void ModuleVisitor::AddUse(const SourceName &location,
const SourceName &localName, const SourceName &useName) {
if (!useModuleScope_) {
return; // error occurred finding module
}
const auto it = useModuleScope_->find(useName);
if (it == useModuleScope_->end()) {
Say(useName, "'%s' not found in module '%s'"_err_en_US, useName,
useModuleScope_->name());
return;
}
const Symbol &useSymbol{it->second};
if (useSymbol.attrs().test(Attr::PRIVATE)) {
Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, useName,
useModuleScope_->name());
return;
}
Symbol &localSymbol{MakeSymbol(localName, useSymbol.attrs())};
localSymbol.attrs() &= ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
localSymbol.flags() |= useSymbol.flags();
if (auto *details = localSymbol.detailsIf<UseDetails>()) {
// check for importing the same symbol again:
if (localSymbol.GetUltimate() != useSymbol.GetUltimate()) {
localSymbol.set_details(
UseErrorDetails{details->location(), *useModuleScope_});
}
} else if (auto *details = localSymbol.detailsIf<UseErrorDetails>()) {
details->add_occurrence(location, *useModuleScope_);
} else if (localSymbol.has<UnknownDetails>()) {
localSymbol.set_details(UseDetails{location, useSymbol});
} else {
localSymbol.set_details(
UseErrorDetails{useSymbol.name(), *useModuleScope_});
}
}
bool ModuleVisitor::Pre(const parser::Module &x) {
// Make a symbol and push a scope for this module
const auto &name =
std::get<parser::Statement<parser::ModuleStmt>>(x.t).statement.v;
auto &symbol = MakeSymbol(name, ModuleDetails{});
ModuleDetails &details{symbol.details<ModuleDetails>()};
Scope &modScope = CurrScope().MakeScope(Scope::Kind::Module, &symbol);
details.set_scope(&modScope);
PushScope(modScope);
MakeSymbol(name, ModuleDetails{details});
// collect module subprogram names
if (const auto &subpPart =
std::get<std::optional<parser::ModuleSubprogramPart>>(x.t)) {
subpNamesOnly_ = SubprogramKind::Module;
parser::Walk(*subpPart, *static_cast<ResolveNamesVisitor *>(this));
subpNamesOnly_ = std::nullopt;
}
return true;
}
void ModuleVisitor::Post(const parser::Module &) {
ApplyDefaultAccess();
PopScope();
prevAccessStmt_ = nullptr;
}
void ModuleVisitor::ApplyDefaultAccess() {
for (auto &pair : CurrScope()) {
Symbol &symbol = pair.second;
if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
symbol.attrs().set(defaultAccess_);
}
}
}
// InterfaceVistor implementation
bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
inInterfaceBlock_ = true;
isAbstract_ = std::holds_alternative<parser::Abstract>(x.u);
return true;
}
void InterfaceVisitor::Post(const parser::InterfaceStmt &) {}
void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
if (genericSymbol_) {
if (const auto *proc =
genericSymbol_->details<GenericDetails>().CheckSpecific()) {
SayAlreadyDeclared(genericSymbol_->name(), *proc);
}
genericSymbol_ = nullptr;
}
inInterfaceBlock_ = false;
isAbstract_ = false;
}
// Create a symbol for the generic in genericSymbol_
bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
const SourceName *genericName{nullptr};
GenericSpec genericSpec{MapGenericSpec(x)};
switch (genericSpec.kind()) {
case GenericSpec::Kind::GENERIC_NAME:
genericName = &genericSpec.genericName();
break;
case GenericSpec::Kind::OP_DEFINED:
genericName = &genericSpec.definedOp();
break;
default: CHECK(!"TODO: intrinsic ops");
}
genericSymbol_ = FindSymbol(*genericName);
if (genericSymbol_) {
if (!genericSymbol_->isSubprogram()) {
SayAlreadyDeclared(*genericName, *genericSymbol_);
EraseSymbol(*genericName);
genericSymbol_ = nullptr;
} else if (genericSymbol_->has<UseDetails>()) {
// copy the USEd symbol into this scope so we can modify it
const Symbol &ultimate{genericSymbol_->GetUltimate()};
EraseSymbol(*genericName);
genericSymbol_ = &MakeSymbol(ultimate.name(), ultimate.attrs());
if (const auto *details = ultimate.detailsIf<GenericDetails>()) {
genericSymbol_->set_details(GenericDetails{details->specificProcs()});
} else if (const auto *details =
ultimate.detailsIf<SubprogramDetails>()) {
genericSymbol_->set_details(SubprogramDetails{*details});
} else {
CHECK(!"can't happen");
}
}
}
if (!genericSymbol_) {
genericSymbol_ = &MakeSymbol(*genericName);
genericSymbol_->set_details(GenericDetails{});
}
if (genericSymbol_->has<GenericDetails>()) {
// okay
} else if (genericSymbol_->has<SubprogramDetails>() ||
genericSymbol_->has<SubprogramNameDetails>()) {
Details details;
if (auto *d = genericSymbol_->detailsIf<SubprogramNameDetails>()) {
details = *d;
} else if (auto *d = genericSymbol_->detailsIf<SubprogramDetails>()) {
details = *d;
} else {
CHECK(!"can't happen");
}
Symbol symbol{CurrScope(), genericSymbol_->name(), genericSymbol_->attrs(),
std::move(details)};
EraseSymbol(*genericName);
genericSymbol_ = &MakeSymbol(*genericName);
genericSymbol_->set_details(GenericDetails{std::move(symbol)});
}
CHECK(genericSymbol_->has<GenericDetails>());
return false;
}
bool InterfaceVisitor::Pre(const parser::TypeBoundGenericStmt &) {
return true;
}
void InterfaceVisitor::Post(const parser::TypeBoundGenericStmt &) {
// TODO: TypeBoundGenericStmt
}
bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
if (!isGeneric()) {
Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
return false;
}
bool expectModuleProc = std::get<parser::ProcedureStmt::Kind>(x.t) ==
parser::ProcedureStmt::Kind::ModuleProcedure;
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
AddToGeneric(name, expectModuleProc);
}
return false;
}
void InterfaceVisitor::Post(const parser::GenericStmt &x) {
if (auto &accessSpec = std::get<std::optional<parser::AccessSpec>>(x.t)) {
genericSymbol_->attrs().set(AccessSpecToAttr(*accessSpec));
}
for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
AddToGeneric(name);
}
}
void InterfaceVisitor::AddToGeneric(
const parser::Name &name, bool expectModuleProc) {
const auto *symbol = FindSymbol(name.source);
if (!symbol) {
Say(name, "Procedure '%s' not found"_err_en_US);
return;
}
if (symbol == genericSymbol_) {
if (auto *specific =
genericSymbol_->details<GenericDetails>().specific().get()) {
symbol = specific;
}
}
if (!symbol->has<SubprogramDetails>() &&
!symbol->has<SubprogramNameDetails>()) {
Say(name, "'%s' is not a subprogram"_err_en_US);
return;
}
if (expectModuleProc) {
const auto *details = symbol->detailsIf<SubprogramNameDetails>();
if (!details || details->kind() != SubprogramKind::Module) {
Say(name, "'%s' is not a module procedure"_en_US);
}
}
AddToGeneric(*symbol);
}
void InterfaceVisitor::AddToGeneric(const Symbol &symbol) {
genericSymbol_->details<GenericDetails>().add_specificProc(&symbol);
}
void InterfaceVisitor::SetSpecificInGeneric(Symbol &&symbol) {
genericSymbol_->details<GenericDetails>().set_specific(std::move(symbol));
}
// SubprogramVisitor implementation
bool SubprogramVisitor::Pre(const parser::StmtFunctionStmt &x) {
const auto &name = std::get<parser::Name>(x.t);
std::optional<SourceName> occurrence;
std::optional<DeclTypeSpec> resultType;
// Look up name: provides return type or tells us if it's an array
if (auto *symbol = FindSymbol(name.source)) {
if (auto *details = symbol->detailsIf<EntityDetails>()) {
// TODO: check that attrs are compatible with stmt func
resultType = details->type();
occurrence = symbol->name();
EraseSymbol(symbol->name());
} else if (symbol->has<ObjectEntityDetails>()) {
// not a stmt-func at all but an array; do nothing
symbol->add_occurrence(name.source);
badStmtFuncFound_ = true;
return true;
}
}
if (badStmtFuncFound_) {
Say(name, "'%s' has not been declared as an array"_err_en_US);
return true;
}
auto &symbol = PushSubprogramScope(name, Symbol::Flag::Function);
CopyImplicitRules();
if (occurrence) {
symbol.add_occurrence(*occurrence);
}
auto &details = symbol.details<SubprogramDetails>();
for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
EntityDetails dummyDetails{true};
auto it = CurrScope().parent().find(dummyName.source);
if (it != CurrScope().parent().end()) {
if (auto *d = it->second.detailsIf<EntityDetails>()) {
if (d->type()) {
dummyDetails.set_type(*d->type());
}
}
}
details.add_dummyArg(MakeSymbol(dummyName, std::move(dummyDetails)));
}
EraseSymbol(name.source); // added by PushSubprogramScope
EntityDetails resultDetails;
if (resultType) {
resultDetails.set_type(*resultType);
}
details.set_result(MakeSymbol(name, resultDetails));
return true;
}
void SubprogramVisitor::Post(const parser::StmtFunctionStmt &x) {
if (badStmtFuncFound_) {
return; // This wasn't really a stmt function so no scope was created
}
PopScope();
}
bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
if (suffix.resultName) {
funcResultName_ = &suffix.resultName.value();
}
return true;
}
bool SubprogramVisitor::Pre(const parser::SubroutineSubprogram &x) {
const auto &name = std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t);
const auto &subpPart =
std::get<std::optional<parser::InternalSubprogramPart>>(x.t);
return BeginSubprogram(name, Symbol::Flag::Subroutine, subpPart);
}
void SubprogramVisitor::Post(const parser::SubroutineSubprogram &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::FunctionSubprogram &x) {
const auto &name = std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t);
const auto &subpPart =
std::get<std::optional<parser::InternalSubprogramPart>>(x.t);
return BeginSubprogram(name, Symbol::Flag::Function, subpPart);
}
void SubprogramVisitor::Post(const parser::FunctionSubprogram &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
const auto &name = std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t);
return BeginSubprogram(name, Symbol::Flag::Subroutine, std::nullopt);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
const auto &name = std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t);
return BeginSubprogram(name, Symbol::Flag::Function, std::nullopt);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Function &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::FunctionStmt &stmt) {
if (!subpNamesOnly_) {
BeginDeclTypeSpec();
CHECK(!funcResultName_);
}
return true;
}
void SubprogramVisitor::Post(const parser::SubroutineStmt &stmt) {
const auto &name = std::get<parser::Name>(stmt.t);
Symbol &symbol{*CurrScope().symbol()};
CHECK(name.source == symbol.name());
auto &details = symbol.details<SubprogramDetails>();
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
const parser::Name *dummyName = std::get_if<parser::Name>(&dummyArg.u);
CHECK(dummyName != nullptr && "TODO: alternate return indicator");
Symbol &dummy{MakeSymbol(*dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
}
void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
const auto &name = std::get<parser::Name>(stmt.t);
Symbol &symbol{*CurrScope().symbol()};
CHECK(name.source == symbol.name());
auto &details = symbol.details<SubprogramDetails>();
for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
Symbol &dummy{MakeSymbol(dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
// add function result to function scope
EntityDetails funcResultDetails;
if (auto &type = GetDeclTypeSpec()) {
funcResultDetails.set_type(*type);
}
EndDeclTypeSpec();
const parser::Name *funcResultName;
if (funcResultName_ && funcResultName_->source != name.source) {
funcResultName = funcResultName_;
} else {
EraseSymbol(name.source); // was added by PushSubprogramScope
funcResultName = &name;
}
details.set_result(MakeSymbol(*funcResultName, funcResultDetails));
funcResultName_ = nullptr;
}
bool SubprogramVisitor::BeginSubprogram(const parser::Name &name,
Symbol::Flag subpFlag,
const std::optional<parser::InternalSubprogramPart> &subpPart) {
if (subpNamesOnly_) {
auto &symbol = MakeSymbol(name, SubprogramNameDetails{*subpNamesOnly_});
symbol.set(subpFlag);
return false;
}
PushSubprogramScope(name, subpFlag);
if (subpPart) {
subpNamesOnly_ = SubprogramKind::Internal;
parser::Walk(*subpPart, *static_cast<ResolveNamesVisitor *>(this));
subpNamesOnly_ = std::nullopt;
}
return true;
}
void SubprogramVisitor::EndSubprogram() {
if (!subpNamesOnly_) {
PopScope();
}
}
Symbol &SubprogramVisitor::PushSubprogramScope(
const parser::Name &name, Symbol::Flag subpFlag) {
Symbol *symbol = GetSpecificFromGeneric(name);
if (!symbol) {
symbol = &MakeSymbol(name, SubprogramDetails{});
symbol->set(subpFlag);
}
auto &details = symbol->details<SubprogramDetails>();
if (inInterfaceBlock()) {
details.set_isInterface();
if (!isAbstract()) {
symbol->attrs().set(Attr::EXTERNAL);
}
if (isGeneric()) {
AddToGeneric(*symbol);
}
}
Scope &subpScope = CurrScope().MakeScope(Scope::Kind::Subprogram, symbol);
PushScope(subpScope);
// can't reuse this name inside subprogram:
MakeSymbol(name, SubprogramDetails(details)).set(subpFlag);
return *symbol;
}
// If name is a generic, look for the specific subprogram with the same
// name. Return that subprogram symbol or nullptr.
Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
if (Symbol *symbol = FindSymbol(name.source)) {
if (auto *details = symbol->detailsIf<GenericDetails>()) {
// found generic, want subprogram
auto *specific = details->specific().get();
if (isGeneric()) {
if (specific) {
SayAlreadyDeclared(name.source, *specific);
} else {
SetSpecificInGeneric(
Symbol{CurrScope(), name.source, Attrs{}, SubprogramDetails{}});
specific = details->specific().get();
}
}
if (specific) {
if (!specific->has<SubprogramDetails>()) {
specific->set_details(SubprogramDetails{});
}
return specific;
}
}
}
return nullptr;
}
// DeclarationVisitor implementation
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
bool DeclarationVisitor::BeginDecl() {
BeginDeclTypeSpec();
BeginAttrs();
BeginArraySpec();
return true;
}
void DeclarationVisitor::EndDecl() {
EndDeclTypeSpec();
EndAttrs();
EndArraySpec();
}
void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
const auto &name = std::get<parser::Name>(x.t);
DeclareObjectEntity(name, Attrs{});
}
void DeclarationVisitor::Post(const parser::EntityDecl &x) {
// TODO: may be under StructureStmt
const auto &name{std::get<parser::ObjectName>(x.t)};
// TODO: CoarraySpec, CharLength, Initialization
Attrs attrs{attrs_ ? *attrs_ : Attrs{}};
if (!arraySpec().empty()) {
DeclareObjectEntity(name, attrs);
} else {
Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
if (auto &type = GetDeclTypeSpec()) {
SetType(name.source, symbol, *type);
}
}
}
bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
HandleAttributeStmt(Attr::EXTERNAL, x.v);
for (const auto &name : x.v) {
auto *symbol = FindSymbol(name.source);
if (symbol->has<ProcEntityDetails>()) {
// nothing to do
} else if (symbol->has<UnknownDetails>()) {
symbol->set_details(ProcEntityDetails{});
} else if (auto *details = symbol->detailsIf<EntityDetails>()) {
symbol->set_details(ProcEntityDetails(*details));
symbol->set(Symbol::Flag::Function);
} else {
Say2(name.source, "EXTERNAL attribute not allowed on '%s'"_err_en_US,
symbol->name(), "Declaration of '%s'"_en_US);
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
return HandleAttributeStmt(Attr::INTRINSIC, x.v);
}
bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
return HandleAttributeStmt(Attr::OPTIONAL, x.v);
}
bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
return HandleAttributeStmt(Attr::PROTECTED, x.v);
}
bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
return HandleAttributeStmt(Attr::VALUE, x.v);
}
bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
return HandleAttributeStmt(Attr::VOLATILE, x.v);
}
bool DeclarationVisitor::HandleAttributeStmt(
Attr attr, const std::list<parser::Name> &names) {
for (const auto &name : names) {
const auto pair = CurrScope().try_emplace(name.source, Attrs{attr});
if (!pair.second) {
// symbol was already there: set attribute on it
Symbol &symbol{pair.first->second};
if (attr != Attr::ASYNCHRONOUS && attr != Attr::VOLATILE &&
symbol.has<UseDetails>()) {
Say(*currStmtSource(),
"Cannot change %s attribute on use-associated '%s'"_err_en_US,
EnumToString(attr), name.source);
}
symbol.attrs().set(attr);
}
}
return false;
}
void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
CHECK(objectDeclAttr_.has_value());
const auto &name = std::get<parser::ObjectName>(x.t);
DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
}
void DeclarationVisitor::DeclareProcEntity(
const parser::Name &name, Attrs attrs, ProcInterface &&interface) {
Symbol &symbol{DeclareEntity<ProcEntityDetails>(name, attrs)};
if (auto *details = symbol.detailsIf<ProcEntityDetails>()) {
if (interface.type()) {
symbol.set(Symbol::Flag::Function);
} else if (interface.symbol()) {
symbol.set(interface.symbol()->test(Symbol::Flag::Function)
? Symbol::Flag::Function
: Symbol::Flag::Subroutine);
}
details->set_interface(std::move(interface));
symbol.attrs().set(Attr::EXTERNAL);
}
}
void DeclarationVisitor::DeclareObjectEntity(
const parser::Name &name, Attrs attrs) {
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
if (auto *details = symbol.detailsIf<ObjectEntityDetails>()) {
if (auto &type = GetDeclTypeSpec()) {
if (details->type().has_value()) {
Say(name, "The type of '%s' has already been declared"_err_en_US);
} else {
details->set_type(*type);
}
}
if (!arraySpec().empty()) {
if (!details->shape().empty()) {
Say(name,
"The dimensions of '%s' have already been declared"_err_en_US);
} else {
details->set_shape(arraySpec());
}
ClearArraySpec();
}
}
}
bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) {
CHECK(!derivedTypeData_);
derivedTypeData_ = std::make_unique<DerivedTypeDef::Data>();
return true;
}
void DeclarationVisitor::Post(const parser::DerivedTypeDef &x) {
DerivedTypeDef derivedType{*derivedTypeData_};
// TODO: do something with derivedType
derivedTypeData_.reset();
}
bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &x) {
derivedTypeData_->name = std::get<parser::Name>(x.t).source;
BeginAttrs();
return true;
}
void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
derivedTypeData_->attrs = GetAttrs();
EndAttrs();
}
bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
derivedTypeData_->extends = x.v.source;
return false;
}
bool DeclarationVisitor::Pre(const parser::PrivateStmt &x) {
derivedTypeData_->Private = true;
return false;
}
bool DeclarationVisitor::Pre(const parser::SequenceStmt &x) {
derivedTypeData_->sequence = true;
return false;
}
void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
const auto &name = std::get<parser::Name>(x.t).source;
derivedTypeData_->dataComps.emplace_back(
*GetDeclTypeSpec(), name, GetAttrs(), arraySpec());
ClearArraySpec();
}
bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &) {
CHECK(!interfaceName_);
return BeginDecl();
}
void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
interfaceName_ = nullptr;
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
CHECK(!interfaceName_);
return true;
}
void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
interfaceName_ = nullptr;
}
void DeclarationVisitor::Post(const parser::ProcInterface &x) {
if (auto *name = std::get_if<parser::Name>(&x.u)) {
interfaceName_ = &name->source;
}
}
void DeclarationVisitor::Post(const parser::ProcDecl &x) {
const auto &name = std::get<parser::Name>(x.t);
ProcInterface interface;
if (interfaceName_) {
auto *symbol = FindSymbol(*interfaceName_);
if (!symbol) {
Say(*interfaceName_, "Explicit interface '%s' not found"_err_en_US);
} else if (!symbol->HasExplicitInterface()) {
Say2(*interfaceName_,
"'%s' is not an abstract interface or a procedure with an explicit interface"_err_en_US,
symbol->name(), "Declaration of '%s'"_en_US);
} else {
interface.set_symbol(*symbol);
}
} else if (auto &type = GetDeclTypeSpec()) {
interface.set_type(*type);
}
if (derivedTypeData_) {
derivedTypeData_->procComps.emplace_back(
ProcDecl{name.source}, GetAttrs(), std::move(interface));
} else {
DeclareProcEntity(name, GetAttrs(), std::move(interface));
}
}
bool DeclarationVisitor::Pre(const parser::FinalProcedureStmt &x) {
for (const parser::Name &name : x.v) {
derivedTypeData_->finalProcs.push_back(name.source);
}
return false;
}
void DeclarationVisitor::SetType(
const SourceName &name, Symbol &symbol, const DeclTypeSpec &type) {
if (auto *details = symbol.detailsIf<EntityDetails>()) {
if (!details->type().has_value()) {
details->set_type(type);
return;
}
} else if (auto *details = symbol.detailsIf<ObjectEntityDetails>()) {
if (!details->type().has_value()) {
details->set_type(type);
return;
}
} else if (auto *details = symbol.detailsIf<ProcEntityDetails>()) {
if (!details->interface().type()) {
details->interface().set_type(type);
return;
}
} else {
return;
}
Say(name, "The type of '%s' has already been declared"_err_en_US);
}
// ResolveNamesVisitor implementation
bool ResolveNamesVisitor::Pre(const parser::TypeParamDefStmt &x) {
BeginDeclTypeSpec();
return true;
}
void ResolveNamesVisitor::Post(const parser::TypeParamDefStmt &x) {
EndDeclTypeSpec();
// TODO: TypeParamDefStmt
}
bool ResolveNamesVisitor::Pre(const parser::CommonBlockObject &x) {
BeginArraySpec();
return true;
}
void ResolveNamesVisitor::Post(const parser::CommonBlockObject &x) {
ClearArraySpec();
// TODO: CommonBlockObject
}
void ResolveNamesVisitor::Post(const parser::ComponentDecl &) {
ClearArraySpec();
}
bool ResolveNamesVisitor::Pre(const parser::PrefixSpec &x) {
return true; // TODO
}
bool ResolveNamesVisitor::Pre(const parser::FunctionReference &) {
expectedProcFlag_ = Symbol::Flag::Function;
return true;
}
void ResolveNamesVisitor::Post(const parser::FunctionReference &) {
expectedProcFlag_ = std::nullopt;
}
bool ResolveNamesVisitor::Pre(const parser::CallStmt &) {
expectedProcFlag_ = Symbol::Flag::Subroutine;
return true;
}
void ResolveNamesVisitor::Post(const parser::CallStmt &) {
expectedProcFlag_ = std::nullopt;
}
bool ResolveNamesVisitor::CheckUseError(
const SourceName &name, const Symbol &symbol) {
const auto *details = symbol.detailsIf<UseErrorDetails>();
if (!details) {
return false;
}
Message &msg{Say(name, "Reference to '%s' is ambiguous"_err_en_US)};
for (const auto &pair : details->occurrences()) {
const SourceName &location{*pair.first};
const SourceName &moduleName{pair.second->name()};
msg.Attach(location,
MessageFormattedText{"'%s' was use-associated from module '%s'"_en_US,
name.ToString().data(), moduleName.ToString().data()});
}
return true;
}
void ResolveNamesVisitor::Post(const parser::ProcedureDesignator &x) {
if (const auto *name = std::get_if<parser::Name>(&x.u)) {
Symbol &symbol{MakeSymbol(name->source)};
if (symbol.has<UnknownDetails>()) {
if (isImplicitNoneExternal() && !symbol.attrs().test(Attr::EXTERNAL)) {
Say(*name,
"'%s' is an external procedure without the EXTERNAL"
" attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
}
symbol.attrs().set(Attr::EXTERNAL);
symbol.set_details(ProcEntityDetails{});
CHECK(expectedProcFlag_);
symbol.set(*expectedProcFlag_);
} else if (CheckUseError(name->source, symbol)) {
// error was reported
} else {
if (auto *details = symbol.detailsIf<EntityDetails>()) {
symbol.set_details(ProcEntityDetails(*details));
symbol.set(Symbol::Flag::Function);
}
if (symbol.test(Symbol::Flag::Function) &&
expectedProcFlag_ == Symbol::Flag::Subroutine) {
Say2(name->source,
"Cannot call function '%s' like a subroutine"_err_en_US,
symbol.name(), "Declaration of '%s'"_en_US);
} else if (symbol.test(Symbol::Flag::Subroutine) &&
expectedProcFlag_ == Symbol::Flag::Function) {
Say2(name->source,
"Cannot call subroutine '%s' like a function"_err_en_US,
symbol.name(), "Declaration of '%s'"_en_US);
} else if (symbol.detailsIf<ProcEntityDetails>()) {
symbol.set(*expectedProcFlag_); // in case it hasn't been set yet
} else {
Say2(name->source,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US,
symbol.name(), "Declaration of '%s'"_en_US);
}
}
}
}
bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
Attr accessAttr = AccessSpecToAttr(std::get<parser::AccessSpec>(x.t));
if (CurrScope().kind() != Scope::Kind::Module) {
Say(*currStmtSource(),
"%s statement may only appear in the specification part of a module"_err_en_US,
EnumToString(accessAttr));
return false;
}
const auto &accessIds = std::get<std::list<parser::AccessId>>(x.t);
if (accessIds.empty()) {
if (prevAccessStmt_) {
Say("The default accessibility of this module has already been declared"_err_en_US)
.Attach(*prevAccessStmt_, "Previous declaration"_en_US);
}
prevAccessStmt_ = currStmtSource();
defaultAccess_ = accessAttr;
} else {
for (const auto &accessId : accessIds) {
std::visit(
parser::visitors{
[=](const parser::Name &y) { SetAccess(y, accessAttr); },
[=](const parser::Indirection<parser::GenericSpec> &y) {
std::visit(
parser::visitors{
[=](const parser::Name &z) {
SetAccess(z, accessAttr);
},
[](const auto &) { parser::die("TODO: GenericSpec"); },
},
y->u);
},
},
accessId.u);
}
}
return false;
}
// Set the access specification for this name.
void ModuleVisitor::SetAccess(const parser::Name &name, Attr attr) {
Symbol &symbol{MakeSymbol(name.source)};
Attrs &attrs{symbol.attrs()};
if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
// PUBLIC/PRIVATE already set: make it a fatal error if it changed
Attr prev = attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE;
Say(name.source,
attr == prev
? "The accessibility of '%s' has already been specified as %s"_en_US
: "The accessibility of '%s' has already been specified as %s"_err_en_US,
name.source, EnumToString(prev));
} else {
attrs.set(attr);
}
}
static bool NeedsExplicitType(const Symbol &symbol) {
if (symbol.has<UnknownDetails>()) {
return true;
} else if (const auto *details = symbol.detailsIf<EntityDetails>()) {
return !details->type().has_value();
} else if (const auto *details = symbol.detailsIf<ObjectEntityDetails>()) {
return !details->type().has_value();
} else if (const auto *details = symbol.detailsIf<ProcEntityDetails>()) {
return details->interface().symbol() == nullptr &&
details->interface().type() == nullptr;
} else {
return false;
}
}
void ResolveNamesVisitor::Post(const parser::SpecificationPart &s) {
badStmtFuncFound_ = false;
if (isImplicitNoneType()) {
// Check that every name referenced has an explicit type
for (const auto &pair : CurrScope()) {
const auto &name = pair.first;
const auto &symbol = pair.second;
if (NeedsExplicitType(symbol)) {
Say(name, "No explicit type declared for '%s'"_err_en_US);
}
}
}
}
bool ResolveNamesVisitor::Pre(const parser::MainProgram &x) {
Scope &scope = CurrScope().MakeScope(Scope::Kind::MainProgram);
PushScope(scope);
using stmtType = std::optional<parser::Statement<parser::ProgramStmt>>;
if (const stmtType &stmt = std::get<stmtType>(x.t)) {
const parser::Name &name{stmt->statement.v};
MakeSymbol(name, MainProgramDetails());
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
}
return true;
}
void ResolveNamesVisitor::Post(const parser::EndProgramStmt &) { PopScope(); }
const parser::Name *ResolveNamesVisitor::GetVariableName(
const parser::DataRef &x) {
return std::get_if<parser::Name>(&x.u);
}
const parser::Name *ResolveNamesVisitor::GetVariableName(
const parser::Designator &x) {
return std::visit(
parser::visitors{
[&](const parser::ObjectName &x) { return &x; },
[&](const parser::DataRef &x) { return GetVariableName(x); },
[&](const auto &) {
return static_cast<const parser::Name *>(nullptr);
},
},
x.u);
}
const parser::Name *ResolveNamesVisitor::GetVariableName(
const parser::Expr &x) {
if (const auto *designator =
std::get_if<parser::Indirection<parser::Designator>>(&x.u)) {
return GetVariableName(**designator);
} else {
return nullptr;
}
}
const parser::Name *ResolveNamesVisitor::GetVariableName(
const parser::Variable &x) {
if (const auto *designator =
std::get_if<parser::Indirection<parser::Designator>>(&x.u)) {
return GetVariableName(**designator);
} else {
return nullptr;
}
}
// If implicit types are allowed, ensure name is in the symbol table.
// Otherwise, report an error if it hasn't been declared.
void ResolveNamesVisitor::CheckImplicitSymbol(const parser::Name *name) {
if (name) {
if (const auto *symbol = FindSymbol(name->source)) {
if (CheckUseError(name->source, *symbol) ||
!symbol->has<UnknownDetails>()) {
return; // reported an error or symbol is declared
}
}
if (isImplicitNoneType()) {
Say(*name, "No explicit type declared for '%s'"_err_en_US);
} else {
CurrScope().try_emplace(name->source);
}
}
}
void ResolveNamesVisitor::Post(const parser::Program &) {
// ensure that all temps were deallocated
CHECK(!attrs_);
CHECK(!GetDeclTypeSpec());
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-23 01:08:20 +01:00
void ResolveNames(
parser::Program &program, const parser::CookedSource &cookedSource) {
ResolveNamesVisitor visitor;
parser::Walk(static_cast<const parser::Program &>(program), visitor);
if (!visitor.messages().empty()) {
visitor.messages().Emit(std::cerr, cookedSource);
return;
}
RewriteParseTree(program);
}
// Map the enum in the parser to the one in GenericSpec
static GenericSpec::Kind MapIntrinsicOperator(
parser::DefinedOperator::IntrinsicOperator x) {
switch (x) {
case parser::DefinedOperator::IntrinsicOperator::Add:
return GenericSpec::OP_ADD;
case parser::DefinedOperator::IntrinsicOperator::AND:
return GenericSpec::OP_AND;
case parser::DefinedOperator::IntrinsicOperator::Concat:
return GenericSpec::OP_CONCAT;
case parser::DefinedOperator::IntrinsicOperator::Divide:
return GenericSpec::OP_DIVIDE;
case parser::DefinedOperator::IntrinsicOperator::EQ:
return GenericSpec::OP_EQ;
case parser::DefinedOperator::IntrinsicOperator::EQV:
return GenericSpec::OP_EQV;
case parser::DefinedOperator::IntrinsicOperator::GE:
return GenericSpec::OP_GE;
case parser::DefinedOperator::IntrinsicOperator::GT:
return GenericSpec::OP_GT;
case parser::DefinedOperator::IntrinsicOperator::LE:
return GenericSpec::OP_LE;
case parser::DefinedOperator::IntrinsicOperator::LT:
return GenericSpec::OP_LT;
case parser::DefinedOperator::IntrinsicOperator::Multiply:
return GenericSpec::OP_MULTIPLY;
case parser::DefinedOperator::IntrinsicOperator::NE:
return GenericSpec::OP_NE;
case parser::DefinedOperator::IntrinsicOperator::NEQV:
return GenericSpec::OP_NEQV;
case parser::DefinedOperator::IntrinsicOperator::NOT:
return GenericSpec::OP_NOT;
case parser::DefinedOperator::IntrinsicOperator::OR:
return GenericSpec::OP_OR;
case parser::DefinedOperator::IntrinsicOperator::Power:
return GenericSpec::OP_POWER;
case parser::DefinedOperator::IntrinsicOperator::Subtract:
return GenericSpec::OP_SUBTRACT;
case parser::DefinedOperator::IntrinsicOperator::XOR:
return GenericSpec::OP_XOR;
default: CRASH_NO_CASE;
}
}
// Map a parser::GenericSpec to a semantics::GenericSpec
static GenericSpec MapGenericSpec(const parser::GenericSpec &genericSpec) {
return std::visit(
parser::visitors{
[](const parser::Name &x) {
return GenericSpec::GenericName(x.source);
},
[](const parser::DefinedOperator &x) {
return std::visit(
parser::visitors{
[](const parser::DefinedOpName &name) {
return GenericSpec::DefinedOp(name.v.source);
},
[](const parser::DefinedOperator::IntrinsicOperator &x) {
return GenericSpec::IntrinsicOp(MapIntrinsicOperator(x));
},
},
x.u);
},
[](const parser::GenericSpec::Assignment &) {
return GenericSpec::IntrinsicOp(GenericSpec::ASSIGNMENT);
},
[](const parser::GenericSpec::ReadFormatted &) {
return GenericSpec::IntrinsicOp(GenericSpec::READ_FORMATTED);
},
[](const parser::GenericSpec::ReadUnformatted &) {
return GenericSpec::IntrinsicOp(GenericSpec::READ_UNFORMATTED);
},
[](const parser::GenericSpec::WriteFormatted &) {
return GenericSpec::IntrinsicOp(GenericSpec::WRITE_FORMATTED);
},
[](const parser::GenericSpec::WriteUnformatted &) {
return GenericSpec::IntrinsicOp(GenericSpec::WRITE_UNFORMATTED);
},
},
genericSpec.u);
}
static void PutIndent(std::ostream &os, int indent) {
for (int i = 0; i < indent; ++i) {
os << " ";
}
}
static void DumpSymbols(std::ostream &os, const Scope &scope, int indent = 0) {
PutIndent(os, indent);
os << Scope::EnumToString(scope.kind()) << " scope:";
if (const auto *symbol = scope.symbol()) {
os << ' ' << symbol->name().ToString();
}
os << '\n';
++indent;
for (const auto &symbol : scope) {
PutIndent(os, indent);
os << symbol.second << "\n";
}
for (const auto &child : scope.children()) {
DumpSymbols(os, child, indent);
}
--indent;
}
void DumpSymbols(std::ostream &os) { DumpSymbols(os, Scope::globalScope); }
} // namespace Fortran::semantics