llvm/flang/lib/semantics/check-allocate.cc

623 lines
24 KiB
C++
Raw Normal View History

// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "check-allocate.h"
#include "attr.h"
#include "expression.h"
#include "tools.h"
#include "type.h"
#include "../evaluate/fold.h"
#include "../evaluate/type.h"
#include "../parser/parse-tree.h"
#include "../parser/tools.h"
namespace Fortran::semantics {
struct AllocateCheckerInfo {
const DeclTypeSpec *typeSpec{nullptr};
std::optional<evaluate::DynamicType> sourceExprType;
std::optional<parser::CharBlock> sourceExprLoc;
std::optional<parser::CharBlock> typeSpecLoc;
int sourceExprRank{0}; // only valid if gotMold || gotSrc
bool gotStat{false};
bool gotMsg{false};
bool gotTypeSpec{false};
bool gotSrc{false};
bool gotMold{false};
};
class AllocationCheckerHelper {
public:
AllocationCheckerHelper(
const parser::Allocation &alloc, AllocateCheckerInfo &info)
: allocateInfo_{info}, allocateObject_{std::get<parser::AllocateObject>(
alloc.t)},
name_{parser::GetLastName(allocateObject_)},
symbol_{name_.symbol ? &name_.symbol->GetUltimate() : nullptr},
type_{symbol_ ? symbol_->GetType() : nullptr},
allocateShapeSpecRank_{ShapeSpecRank(alloc)}, rank_{symbol_
? symbol_->Rank()
: 0},
allocateCoarraySpecRank_{CoarraySpecRank(alloc)},
corank_{symbol_ ? symbol_->Corank() : 0} {}
bool RunChecks(SemanticsContext &context);
private:
bool hasAllocateShapeSpecList() const { return allocateShapeSpecRank_ != 0; }
bool hasAllocateCoarraySpec() const { return allocateCoarraySpecRank_ != 0; }
bool RunCoarrayRelatedChecks(SemanticsContext &) const;
static int ShapeSpecRank(const parser::Allocation &allocation) {
return static_cast<int>(
std::get<std::list<parser::AllocateShapeSpec>>(allocation.t).size());
}
static int CoarraySpecRank(const parser::Allocation &allocation) {
if (const auto &coarraySpec{
std::get<std::optional<parser::AllocateCoarraySpec>>(
allocation.t)}) {
return std::get<std::list<parser::AllocateCoshapeSpec>>(coarraySpec->t)
.size() +
1;
} else {
return 0;
}
}
void GatherAllocationBasicInfo() {
if (type_->category() == DeclTypeSpec::Category::Character) {
hasDeferredTypeParameter_ =
type_->characterTypeSpec().length().isDeferred();
} else if (const DerivedTypeSpec * derivedTypeSpec{type_->AsDerived()}) {
for (const auto &pair : derivedTypeSpec->parameters()) {
hasDeferredTypeParameter_ |= pair.second.isDeferred();
}
isAbstract_ = derivedTypeSpec->typeSymbol().attrs().test(Attr::ABSTRACT);
}
isUnlimitedPolymorphic_ =
type_->category() == DeclTypeSpec::Category::ClassStar;
}
AllocateCheckerInfo &allocateInfo_;
const parser::AllocateObject &allocateObject_;
const parser::Name &name_;
const Symbol *symbol_{nullptr};
const DeclTypeSpec *type_{nullptr};
const int allocateShapeSpecRank_;
const int rank_{0};
const int allocateCoarraySpecRank_;
const int corank_{0};
bool hasDeferredTypeParameter_{false};
bool isUnlimitedPolymorphic_{false};
bool isAbstract_{false};
};
static std::optional<AllocateCheckerInfo> CheckAllocateOptions(
const parser::AllocateStmt &allocateStmt, SemanticsContext &context) {
AllocateCheckerInfo info;
bool stopCheckingAllocate{false}; // for errors that would lead to ambiguity
if (const auto &typeSpec{
std::get<std::optional<parser::TypeSpec>>(allocateStmt.t)}) {
info.typeSpec = typeSpec->declTypeSpec;
if (!info.typeSpec) {
CHECK(context.AnyFatalError());
return std::nullopt;
}
info.gotTypeSpec = true;
info.typeSpecLoc = parser::FindSourceLocation(*typeSpec);
if (const DerivedTypeSpec * derived{info.typeSpec->AsDerived()}) {
// C937
if (const Symbol *
coarrayComponent{HasCoarrayUltimateComponent(*derived)}) {
context
.Say(
"Type-spec in ALLOCATE must not specify a type with a coarray ultimate component"_err_en_US)
.Attach(coarrayComponent->name(),
"Coarray ultimate component declared here"_en_US);
}
}
}
const parser::Expr *parserSourceExpr{nullptr};
for (const parser::AllocOpt &allocOpt :
std::get<std::list<parser::AllocOpt>>(allocateStmt.t)) {
std::visit(
common::visitors{
[&](const parser::StatOrErrmsg &statOrErr) {
std::visit(
common::visitors{
[&](const parser::StatVariable &statVariable) {
if (info.gotStat) { // C943
context.Say(
"STAT may not be duplicated in a ALLOCATE statement"_err_en_US);
}
info.gotStat = true;
},
[&](const parser::MsgVariable &msgVariable) {
if (info.gotMsg) { // C943
context.Say(
"ERRMSG may not be duplicated in a ALLOCATE statement"_err_en_US);
}
info.gotMsg = true;
},
},
statOrErr.u);
},
[&](const parser::AllocOpt::Source &source) {
if (info.gotSrc) { // C943
context.Say(
"SOURCE may not be duplicated in a ALLOCATE statement"_err_en_US);
stopCheckingAllocate = true;
}
if (info.gotMold || info.gotTypeSpec) { // C944
context.Say(
"At most one of source-expr and type-spec may appear in a ALLOCATE statement"_err_en_US);
stopCheckingAllocate = true;
}
parserSourceExpr = &source.v.value();
info.gotSrc = true;
},
[&](const parser::AllocOpt::Mold &mold) {
if (info.gotMold) { // C943
context.Say(
"MOLD may not be duplicated in a ALLOCATE statement"_err_en_US);
stopCheckingAllocate = true;
}
if (info.gotSrc || info.gotTypeSpec) { // C944
context.Say(
"At most one of source-expr and type-spec may appear in a ALLOCATE statement"_err_en_US);
stopCheckingAllocate = true;
}
parserSourceExpr = &mold.v.value();
info.gotMold = true;
},
},
allocOpt.u);
}
if (stopCheckingAllocate) {
return std::nullopt;
}
if (info.gotSrc || info.gotMold) {
CHECK(parserSourceExpr);
if (const auto *expr{GetExpr(*parserSourceExpr)}) {
info.sourceExprType = expr->GetType();
if (!info.sourceExprType.has_value()) {
CHECK(context.AnyFatalError());
return std::nullopt;
}
info.sourceExprRank = expr->Rank();
info.sourceExprLoc = parserSourceExpr->source;
if (info.sourceExprType.value().category() == TypeCategory::Derived &&
!info.sourceExprType.value().IsUnlimitedPolymorphic()) {
const DerivedTypeSpec &derived{
info.sourceExprType.value().GetDerivedTypeSpec()};
// C949
if (const Symbol *
coarrayComponent{HasCoarrayUltimateComponent(derived)}) {
context
.Say(parserSourceExpr->source,
"SOURCE or MOLD expression must not have a type with a coarray ultimate component"_err_en_US)
.Attach(coarrayComponent->name(),
"Coarray ultimate component declared here"_en_US);
}
if (info.gotSrc) {
// C948
if (IsEventTypeOrLockType(&derived)) {
context.Say(parserSourceExpr->source,
"SOURCE expression type must not be EVENT_TYPE or LOCK_TYPE from ISO_FORTRAN_ENV"_err_en_US);
} else if (const Symbol *
component{HasEventOrLockPotentialComponent(derived)}) {
context
.Say(parserSourceExpr->source,
"SOURCE expression type must not have potential subobject component of type EVENT_TYPE or LOCK_TYPE from ISO_FORTRAN_ENV"_err_en_US)
.Attach(component->name(),
"Potential subobject component of forbidden type declared here"_en_US);
}
}
}
} else {
// Error already reported on source expression.
// Do not continue allocate checks.
return std::nullopt;
}
}
return info;
}
// Beware, type compatibility is not symmetric, IsTypeCompatible checks that
// type1 is type compatible with type2. Note: type parameters are not considered
// in this test.
static bool IsTypeCompatible(
const DeclTypeSpec &type1, const DerivedTypeSpec &derivedType2) {
if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
if (type1.category() == DeclTypeSpec::Category::TypeDerived) {
return &derivedType1->typeSymbol() == &derivedType2.typeSymbol();
} else if (type1.category() == DeclTypeSpec::Category::ClassDerived) {
for (const DerivedTypeSpec *parent{&derivedType2}; parent != nullptr;
parent = parent->typeSymbol().GetParentTypeSpec()) {
if (&derivedType1->typeSymbol() == &parent->typeSymbol()) {
return true;
}
}
}
}
return false;
}
static bool IsTypeCompatible(
const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
if (type1.category() == DeclTypeSpec::Category::ClassStar) {
// TypeStar does not make sense in allocate context because assumed type
// cannot be allocatable (C709)
return true;
}
if (const IntrinsicTypeSpec * intrinsicType2{type2.AsIntrinsic()}) {
if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
return intrinsicType1->category() == intrinsicType2->category();
} else {
return false;
}
} else if (const DerivedTypeSpec * derivedType2{type2.AsDerived()}) {
return IsTypeCompatible(type1, *derivedType2);
}
return false;
}
static bool IsTypeCompatible(
const DeclTypeSpec &type1, const evaluate::DynamicType &type2) {
if (type1.category() == DeclTypeSpec::Category::ClassStar) {
// TypeStar does not make sense in allocate context because assumed type
// cannot be allocatable (C709)
return true;
}
if (type2.category() != evaluate::TypeCategory::Derived) {
if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
return intrinsicType1->category() == type2.category();
} else {
return false;
}
} else {
return IsTypeCompatible(type1, type2.GetDerivedTypeSpec());
}
return false;
}
// Note: Check assumes type1 is compatible with type2. type2 may have more type
// parameters than type1 but if a type2 type parameter is assumed, then this
// check enforce that type1 has it. type1 can be unlimited polymorphic, but not
// type2.
static bool HaveSameAssumedTypeParameters(
const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
if (type2.category() == DeclTypeSpec::Category::Character) {
bool type2LengthIsAssumed{type2.characterTypeSpec().length().isAssumed()};
if (type1.category() == DeclTypeSpec::Category::Character) {
return type1.characterTypeSpec().length().isAssumed() ==
type2LengthIsAssumed;
}
// It is possible to reach this if type1 is unlimited polymorphic
return !type2LengthIsAssumed;
} else if (const DerivedTypeSpec * derivedType2{type2.AsDerived()}) {
int type2AssumedParametersCount{0};
int type1AssumedParametersCount{0};
for (const auto &pair : derivedType2->parameters()) {
type2AssumedParametersCount += pair.second.isAssumed();
}
// type1 may be unlimited polymorphic
if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
for (auto it{derivedType1->parameters().begin()};
it != derivedType1->parameters().end(); ++it) {
if (it->second.isAssumed()) {
++type1AssumedParametersCount;
const ParamValue *param{derivedType2->FindParameter(it->first)};
if (!param || !param->isAssumed()) {
// type1 has an assumed parameter that is not a type parameter of
// type2 or not assumed in type2.
return false;
}
}
}
}
// Will return false if type2 has type parameters that are not assumed in
// type1 or do not exist in type1
return type1AssumedParametersCount == type2AssumedParametersCount;
}
return true; // other intrinsic types have no length type parameters
}
static std::optional<std::int64_t> GetTypeParameterInt64Value(
const Symbol &parameterSymbol, const DerivedTypeSpec &derivedType) {
if (const ParamValue *
paramValue{derivedType.FindParameter(parameterSymbol.name())}) {
return evaluate::ToInt64(paramValue->GetExplicit());
} else {
return std::nullopt;
}
}
// HaveCompatibleKindParameters functions assume type1 is type compatible with
// type2 (except for kind type parameters)
static bool HaveCompatibleKindParameters(
const DerivedTypeSpec &derivedType1, const DerivedTypeSpec &derivedType2) {
for (const Symbol *symbol :
OrderParameterDeclarations(derivedType1.typeSymbol())) {
if (symbol->get<TypeParamDetails>().attr() == common::TypeParamAttr::Kind) {
// At this point, it should have been ensured that these contain integer
// constants, so die if this is not the case.
if (GetTypeParameterInt64Value(*symbol, derivedType1).value() !=
GetTypeParameterInt64Value(*symbol, derivedType2).value()) {
return false;
}
}
}
return true;
}
static bool HaveCompatibleKindParameters(
const DeclTypeSpec &type1, const evaluate::DynamicType &type2) {
if (type1.category() == DeclTypeSpec::Category::ClassStar) {
return true;
}
if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
return evaluate::ToInt64(intrinsicType1->kind()).value() == type2.kind();
} else if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
return HaveCompatibleKindParameters(
*derivedType1, type2.GetDerivedTypeSpec());
} else {
common::die("unexpected type1 category");
}
}
static bool HaveCompatibleKindParameters(
const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
if (type1.category() == DeclTypeSpec::Category::ClassStar) {
return true;
}
if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
const IntrinsicTypeSpec *intrinsicType2{type2.AsIntrinsic()};
CHECK(intrinsicType2); // Violation of type compatibility hypothesis.
return intrinsicType1->kind() == intrinsicType2->kind();
} else if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
const DerivedTypeSpec *derivedType2{type2.AsDerived()};
CHECK(derivedType2); // Violation of type compatibility hypothesis.
return HaveCompatibleKindParameters(*derivedType1, *derivedType2);
} else {
common::die("unexpected type1 category");
}
}
bool AllocationCheckerHelper::RunChecks(SemanticsContext &context) {
if (symbol_ == nullptr) {
CHECK(context.AnyFatalError());
[flang] Continue semantic checking after name resolution error When an error occurs in name resolution, continue semantic processing in order to detect other errors. This means we can no longer assume that every `parser::Name` has a symbol even after name resolution completes. In `RewriteMutator`, only report internal error for unresolved symbol if there have been no fatal errors. Add `Error` flag to `Symbol` to indicate that an error occcurred related to it. Once we report an error about a symbol we should avoid reporting any more to prevent cascading errors. Add `HasError()` and `SetError()` to simplify working with this flag. Change some places that we assume that a `parser::Name` has a non-null symbol. There are probably more. `resolve-names.cc`: Set the `Error` flag when we report a fatal error related to a symbol. (This requires making some symbols non-const.) Remove `CheckScalarIntegerType()` as `ExprChecker` will take care of those constraints if they are expressed in the parse tree. One exception to that is the name in a `ConcurrentControl`. Explicitly perform that check using `EvaluateExpr()` and constraint classes so we get consistent error messages. In expression analysis, when a constraint is violated (like `Scalar<>` or `Integer<>`), reset the wrapped expression so that we don't assume it is valid. A `GenericExprWrapper` holding a std::nullopt indicates error. Change `EnforceTypeConstraint()` to return false when the constraint fails to enable this. check-do-concurrent.cc: Reorganize the Gather*VariableNames functions into one to simplify the task of filtering out unresolved names. Remove `CheckNoDuplicates()` and `CheckNoCollisions()` as those checks is already done in name resolution when the names are added to the scope. Original-commit: flang-compiler/f18@bcdb679405906575f36d3314f17da89e3e89d45c Reviewed-on: https://github.com/flang-compiler/f18/pull/429 Tree-same-pre-rewrite: false
2019-04-25 22:18:33 +02:00
return false;
}
if (!IsVariableName(*symbol_)) { // C932 pre-requisite
context.Say(name_.source,
"Name in ALLOCATE statement must be a variable name"_err_en_US);
return false;
}
if (type_ == nullptr) {
// This is done after variable check because a user could have put
// a subroutine name in allocate for instance which is a symbol with
// no type.
CHECK(context.AnyFatalError());
return false;
}
GatherAllocationBasicInfo();
if (!IsAllocatableOrPointer(*symbol_)) { // C932
context.Say(name_.source,
"Entity in ALLOCATE statement must have the ALLOCATABLE or POINTER attribute"_err_en_US);
return false;
}
bool gotSourceExprOrTypeSpec{allocateInfo_.gotMold ||
allocateInfo_.gotTypeSpec || allocateInfo_.gotSrc};
if (hasDeferredTypeParameter_ && !gotSourceExprOrTypeSpec) {
// C933
context.Say(name_.source,
"Either type-spec or source-expr must appear in ALLOCATE when allocatable object has a deferred type parameters"_err_en_US);
return false;
}
if (isUnlimitedPolymorphic_ && !gotSourceExprOrTypeSpec) {
// C933
context.Say(name_.source,
"Either type-spec or source-expr must appear in ALLOCATE when allocatable object is unlimited polymorphic"_err_en_US);
return false;
}
if (isAbstract_ && !gotSourceExprOrTypeSpec) {
// C933
context.Say(name_.source,
"Either type-spec or source-expr must appear in ALLOCATE when allocatable object is of abstract type"_err_en_US);
return false;
}
if (allocateInfo_.gotTypeSpec) {
if (!IsTypeCompatible(*type_, *allocateInfo_.typeSpec)) {
// C934
context.Say(name_.source,
"Allocatable object in ALLOCATE must be type compatible with type-spec"_err_en_US);
return false;
}
if (!HaveCompatibleKindParameters(*type_, *allocateInfo_.typeSpec)) {
context.Say(name_.source,
// C936
"Kind type parameters of allocatable object in ALLOCATE must be the same as the corresponding ones in type-spec"_err_en_US);
return false;
}
if (!HaveSameAssumedTypeParameters(*type_, *allocateInfo_.typeSpec)) {
// C935
context.Say(name_.source,
"Type parameters in type-spec must be assumed if and only if they are assumed for allocatable object in ALLOCATE"_err_en_US);
return false;
}
} else if (allocateInfo_.gotSrc || allocateInfo_.gotMold) {
if (!IsTypeCompatible(*type_, allocateInfo_.sourceExprType.value())) {
// first part of C945
context.Say(name_.source,
"Allocatable object in ALLOCATE must be type compatible with source expression from MOLD or SOURCE"_err_en_US);
return false;
}
if (!HaveCompatibleKindParameters(
*type_, allocateInfo_.sourceExprType.value())) {
// C946
context.Say(name_.source,
"Kind type parameters of allocatable object must be the same as the corresponding ones of SOURCE or MOLD expression"_err_en_US);
return false;
}
}
// Shape related checks
if (rank_ > 0) {
if (!hasAllocateShapeSpecList()) {
// C939
if (!(allocateInfo_.gotSrc || allocateInfo_.gotMold)) {
context.Say(name_.source,
"Arrays in ALLOCATE must have a shape specification or an expression of the same rank must appear in SOURCE or MOLD"_err_en_US);
return false;
} else {
if (allocateInfo_.sourceExprRank != rank_) {
context
.Say(name_.source,
"Arrays in ALLOCATE must have a shape specification or an expression of the same rank must appear in SOURCE or MOLD"_err_en_US)
.Attach(allocateInfo_.sourceExprLoc.value(),
"Expression in %s has rank %d but allocatable object has rank %d"_en_US,
allocateInfo_.gotSrc ? "SOURCE" : "MOLD",
allocateInfo_.sourceExprRank, rank_);
return false;
}
}
} else {
// first part of C942
if (allocateShapeSpecRank_ != rank_) {
context
.Say(name_.source,
"The number of shape specifications, when they appear, must match the rank of allocatable object"_err_en_US)
.Attach(symbol_->name(), "Declared here with rank %d"_en_US, rank_);
return false;
}
}
} else {
// C940
if (hasAllocateShapeSpecList()) {
context.Say(name_.source,
"Shape specifications must not appear when allocatable object is scalar"_err_en_US);
return false;
}
}
// second and last part of C945
if (allocateInfo_.gotSrc && allocateInfo_.sourceExprRank &&
allocateInfo_.sourceExprRank != rank_) {
context
.Say(name_.source,
"If SOURCE appears, the related expression must be scalar or have the same rank as each allocatable object in ALLOCATE"_err_en_US)
.Attach(allocateInfo_.sourceExprLoc.value(),
"SOURCE expression has rank %d"_en_US, allocateInfo_.sourceExprRank)
.Attach(symbol_->name(),
"Allocatable object declared here with rank %d"_en_US, rank_);
return false;
}
return RunCoarrayRelatedChecks(context);
}
bool AllocationCheckerHelper::RunCoarrayRelatedChecks(
SemanticsContext &context) const {
if (symbol_ == nullptr) {
CHECK(context.AnyFatalError());
return false;
}
if (IsCoarray(*symbol_)) {
if (allocateInfo_.gotTypeSpec) {
// C938
if (const DerivedTypeSpec *
derived{allocateInfo_.typeSpec->AsDerived()}) {
if (IsTeamType(derived)) {
context
.Say(allocateInfo_.typeSpecLoc.value(),
"Type-Spec in ALLOCATE must not be TEAM_TYPE from ISO_FORTRAN_ENV when an allocatable object is a coarray"_err_en_US)
.Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
return false;
} else if (IsIsoCType(derived)) {
context
.Say(allocateInfo_.typeSpecLoc.value(),
"Type-Spec in ALLOCATE must not be C_PTR or C_FUNPTR from ISO_C_BINDING when an allocatable object is a coarray"_err_en_US)
.Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
return false;
}
}
} else if (allocateInfo_.gotSrc || allocateInfo_.gotMold) {
// C948
const evaluate::DynamicType &sourceType{
allocateInfo_.sourceExprType.value()};
if (sourceType.category() == TypeCategory::Derived &&
!sourceType.IsUnlimitedPolymorphic()) {
const DerivedTypeSpec derived{sourceType.GetDerivedTypeSpec()};
if (IsTeamType(&derived)) {
context
.Say(allocateInfo_.sourceExprLoc.value(),
"SOURCE or MOLD expression type must not be TEAM_TYPE from ISO_FORTRAN_ENV when an allocatable object is a coarray"_err_en_US)
.Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
return false;
} else if (IsIsoCType(&derived)) {
context
.Say(allocateInfo_.sourceExprLoc.value(),
"SOURCE or MOLD expression type must not be C_PTR or C_FUNPTR from ISO_C_BINDING when an allocatable object is a coarray"_err_en_US)
.Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
return false;
}
}
}
if (!hasAllocateCoarraySpec()) {
// C941
context.Say(name_.source,
"Coarray specification must appear in ALLOCATE when allocatable object is a coarray"_err_en_US);
return false;
} else {
if (allocateCoarraySpecRank_ != corank_) {
// Second and last part of C942
context
.Say(name_.source,
"Corank of coarray specification in ALLOCATE must match corank of alloctable coarray"_err_en_US)
.Attach(
symbol_->name(), "Declared here with corank %d"_en_US, corank_);
return false;
}
}
} else { // Not a coarray
if (hasAllocateCoarraySpec()) {
// C941
context.Say(name_.source,
"Coarray specification must not appear in ALLOCATE when allocatable object is not a coarray"_err_en_US);
return false;
}
}
if (const parser::CoindexedNamedObject *
coindexedObject{parser::GetCoindexedNamedObject(allocateObject_)}) {
// C950
context.Say(parser::FindSourceLocation(*coindexedObject),
"Allocatable object must not be coindexed in ALLOCATE"_err_en_US);
return false;
}
return true;
}
void AllocateChecker::Leave(const parser::AllocateStmt &allocateStmt) {
if (auto info{CheckAllocateOptions(allocateStmt, context_)}) {
for (const parser::Allocation &allocation :
std::get<std::list<parser::Allocation>>(allocateStmt.t)) {
AllocationCheckerHelper{allocation, *info}.RunChecks(context_);
}
}
}
}