02a6a54ecd
Test for the compiler builtins __builtin_clz, __builtin_ctz, and __builtin_popcount, and make use of these in preference to handwritten C code if they're available. Create src/port infrastructure for "leftmost one", "rightmost one", and "popcount" so as to centralize these decisions. On x86_64, __builtin_popcount generally won't make use of the POPCNT opcode because that's not universally supported yet. Provide code that checks CPUID and then calls POPCNT via asm() if available. This requires indirecting through a function pointer, which is an annoying amount of overhead for a one-instruction operation, but it's probably not worth working harder than this for our current use-cases. I'm not sure we've found all the existing places that could profit from this new infrastructure; but we at least touched all the ones that used copied-and-pasted versions of the bitmapset.c code, and got rid of multiple copies of the associated constant arrays. While at it, replace c-compiler.m4's one-per-builtin-function macros with a single one that can handle all the cases we need to worry about so far. Also, because I'm paranoid, make those checks into AC_LINK checks rather than just AC_COMPILE; the former coding failed to verify that libgcc has support for the builtin, in cases where it's not inline code. David Rowley, Thomas Munro, Alvaro Herrera, Tom Lane Discussion: https://postgr.es/m/CAKJS1f9WTAGG1tPeJnD18hiQW5gAk59fQ6WK-vfdAKEHyRg2RA@mail.gmail.com
671 lines
24 KiB
Text
671 lines
24 KiB
Text
# Macros to detect C compiler features
|
|
# config/c-compiler.m4
|
|
|
|
|
|
# PGAC_C_SIGNED
|
|
# -------------
|
|
# Check if the C compiler understands signed types.
|
|
AC_DEFUN([PGAC_C_SIGNED],
|
|
[AC_CACHE_CHECK(for signed types, pgac_cv_c_signed,
|
|
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
|
|
[signed char c; signed short s; signed int i;])],
|
|
[pgac_cv_c_signed=yes],
|
|
[pgac_cv_c_signed=no])])
|
|
if test x"$pgac_cv_c_signed" = xno ; then
|
|
AC_DEFINE(signed,, [Define to empty if the C compiler does not understand signed types.])
|
|
fi])# PGAC_C_SIGNED
|
|
|
|
|
|
|
|
# PGAC_C_PRINTF_ARCHETYPE
|
|
# -----------------------
|
|
# Select the format archetype to be used by gcc to check printf-type functions.
|
|
# We prefer "gnu_printf", as that most closely matches the features supported
|
|
# by src/port/snprintf.c (particularly the %m conversion spec). However,
|
|
# on some NetBSD versions, that doesn't work while "__syslog__" does.
|
|
# If all else fails, use "printf".
|
|
AC_DEFUN([PGAC_PRINTF_ARCHETYPE],
|
|
[AC_CACHE_CHECK([for printf format archetype], pgac_cv_printf_archetype,
|
|
[pgac_cv_printf_archetype=gnu_printf
|
|
PGAC_TEST_PRINTF_ARCHETYPE
|
|
if [[ "$ac_archetype_ok" = no ]]; then
|
|
pgac_cv_printf_archetype=__syslog__
|
|
PGAC_TEST_PRINTF_ARCHETYPE
|
|
if [[ "$ac_archetype_ok" = no ]]; then
|
|
pgac_cv_printf_archetype=printf
|
|
fi
|
|
fi])
|
|
AC_DEFINE_UNQUOTED([PG_PRINTF_ATTRIBUTE], [$pgac_cv_printf_archetype],
|
|
[Define to best printf format archetype, usually gnu_printf if available.])
|
|
])# PGAC_PRINTF_ARCHETYPE
|
|
|
|
# Subroutine: test $pgac_cv_printf_archetype, set $ac_archetype_ok to yes or no
|
|
AC_DEFUN([PGAC_TEST_PRINTF_ARCHETYPE],
|
|
[ac_save_c_werror_flag=$ac_c_werror_flag
|
|
ac_c_werror_flag=yes
|
|
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
|
|
[extern void pgac_write(int ignore, const char *fmt,...)
|
|
__attribute__((format($pgac_cv_printf_archetype, 2, 3)));],
|
|
[pgac_write(0, "error %s: %m", "foo");])],
|
|
[ac_archetype_ok=yes],
|
|
[ac_archetype_ok=no])
|
|
ac_c_werror_flag=$ac_save_c_werror_flag
|
|
])# PGAC_TEST_PRINTF_ARCHETYPE
|
|
|
|
|
|
# PGAC_TYPE_64BIT_INT(TYPE)
|
|
# -------------------------
|
|
# Check if TYPE is a working 64 bit integer type. Set HAVE_TYPE_64 to
|
|
# yes or no respectively, and define HAVE_TYPE_64 if yes.
|
|
AC_DEFUN([PGAC_TYPE_64BIT_INT],
|
|
[define([Ac_define], [translit([have_$1_64], [a-z *], [A-Z_P])])dnl
|
|
define([Ac_cachevar], [translit([pgac_cv_type_$1_64], [ *], [_p])])dnl
|
|
AC_CACHE_CHECK([whether $1 is 64 bits], [Ac_cachevar],
|
|
[AC_RUN_IFELSE([AC_LANG_SOURCE(
|
|
[typedef $1 ac_int64;
|
|
|
|
/*
|
|
* These are globals to discourage the compiler from folding all the
|
|
* arithmetic tests down to compile-time constants.
|
|
*/
|
|
ac_int64 a = 20000001;
|
|
ac_int64 b = 40000005;
|
|
|
|
int does_int64_work()
|
|
{
|
|
ac_int64 c,d;
|
|
|
|
if (sizeof(ac_int64) != 8)
|
|
return 0; /* definitely not the right size */
|
|
|
|
/* Do perfunctory checks to see if 64-bit arithmetic seems to work */
|
|
c = a * b;
|
|
d = (c + b) / b;
|
|
if (d != a+1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
main() {
|
|
return (! does_int64_work());
|
|
}])],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no],
|
|
[# If cross-compiling, check the size reported by the compiler and
|
|
# trust that the arithmetic works.
|
|
AC_COMPILE_IFELSE([AC_LANG_BOOL_COMPILE_TRY([], [sizeof($1) == 8])],
|
|
Ac_cachevar=yes,
|
|
Ac_cachevar=no)])])
|
|
|
|
Ac_define=$Ac_cachevar
|
|
if test x"$Ac_cachevar" = xyes ; then
|
|
AC_DEFINE(Ac_define, 1, [Define to 1 if `]$1[' works and is 64 bits.])
|
|
fi
|
|
undefine([Ac_define])dnl
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_TYPE_64BIT_INT
|
|
|
|
|
|
# PGAC_TYPE_128BIT_INT
|
|
# ---------------------
|
|
# Check if __int128 is a working 128 bit integer type, and if so
|
|
# define PG_INT128_TYPE to that typename, and define ALIGNOF_PG_INT128_TYPE
|
|
# as its alignment requirement.
|
|
#
|
|
# This currently only detects a GCC/clang extension, but support for other
|
|
# environments may be added in the future.
|
|
#
|
|
# For the moment we only test for support for 128bit math; support for
|
|
# 128bit literals and snprintf is not required.
|
|
AC_DEFUN([PGAC_TYPE_128BIT_INT],
|
|
[AC_CACHE_CHECK([for __int128], [pgac_cv__128bit_int],
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
|
|
/*
|
|
* We don't actually run this test, just link it to verify that any support
|
|
* functions needed for __int128 are present.
|
|
*
|
|
* These are globals to discourage the compiler from folding all the
|
|
* arithmetic tests down to compile-time constants. We do not have
|
|
* convenient support for 128bit literals at this point...
|
|
*/
|
|
__int128 a = 48828125;
|
|
__int128 b = 97656250;
|
|
],[
|
|
__int128 c,d;
|
|
a = (a << 12) + 1; /* 200000000001 */
|
|
b = (b << 12) + 5; /* 400000000005 */
|
|
/* try the most relevant arithmetic ops */
|
|
c = a * b;
|
|
d = (c + b) / b;
|
|
/* must use the results, else compiler may optimize arithmetic away */
|
|
if (d != a+1)
|
|
return 1;
|
|
])],
|
|
[pgac_cv__128bit_int=yes],
|
|
[pgac_cv__128bit_int=no])])
|
|
if test x"$pgac_cv__128bit_int" = xyes ; then
|
|
# Use of non-default alignment with __int128 tickles bugs in some compilers.
|
|
# If not cross-compiling, we can test for bugs and disable use of __int128
|
|
# with buggy compilers. If cross-compiling, hope for the best.
|
|
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83925
|
|
AC_CACHE_CHECK([for __int128 alignment bug], [pgac_cv__128bit_int_bug],
|
|
[AC_RUN_IFELSE([AC_LANG_PROGRAM([
|
|
/* This must match the corresponding code in c.h: */
|
|
#if defined(__GNUC__) || defined(__SUNPRO_C) || defined(__IBMC__)
|
|
#define pg_attribute_aligned(a) __attribute__((aligned(a)))
|
|
#endif
|
|
typedef __int128 int128a
|
|
#if defined(pg_attribute_aligned)
|
|
pg_attribute_aligned(8)
|
|
#endif
|
|
;
|
|
int128a holder;
|
|
void pass_by_val(void *buffer, int128a par) { holder = par; }
|
|
],[
|
|
long int i64 = 97656225L << 12;
|
|
int128a q;
|
|
pass_by_val(main, (int128a) i64);
|
|
q = (int128a) i64;
|
|
if (q != holder)
|
|
return 1;
|
|
])],
|
|
[pgac_cv__128bit_int_bug=ok],
|
|
[pgac_cv__128bit_int_bug=broken],
|
|
[pgac_cv__128bit_int_bug="assuming ok"])])
|
|
if test x"$pgac_cv__128bit_int_bug" != xbroken ; then
|
|
AC_DEFINE(PG_INT128_TYPE, __int128, [Define to the name of a signed 128-bit integer type.])
|
|
AC_CHECK_ALIGNOF(PG_INT128_TYPE)
|
|
fi
|
|
fi])# PGAC_TYPE_128BIT_INT
|
|
|
|
|
|
# PGAC_C_FUNCNAME_SUPPORT
|
|
# -----------------------
|
|
# Check if the C compiler understands __func__ (C99) or __FUNCTION__ (gcc).
|
|
# Define HAVE_FUNCNAME__FUNC or HAVE_FUNCNAME__FUNCTION accordingly.
|
|
AC_DEFUN([PGAC_C_FUNCNAME_SUPPORT],
|
|
[AC_CACHE_CHECK(for __func__, pgac_cv_funcname_func_support,
|
|
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([#include <stdio.h>],
|
|
[printf("%s\n", __func__);])],
|
|
[pgac_cv_funcname_func_support=yes],
|
|
[pgac_cv_funcname_func_support=no])])
|
|
if test x"$pgac_cv_funcname_func_support" = xyes ; then
|
|
AC_DEFINE(HAVE_FUNCNAME__FUNC, 1,
|
|
[Define to 1 if your compiler understands __func__.])
|
|
else
|
|
AC_CACHE_CHECK(for __FUNCTION__, pgac_cv_funcname_function_support,
|
|
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([#include <stdio.h>],
|
|
[printf("%s\n", __FUNCTION__);])],
|
|
[pgac_cv_funcname_function_support=yes],
|
|
[pgac_cv_funcname_function_support=no])])
|
|
if test x"$pgac_cv_funcname_function_support" = xyes ; then
|
|
AC_DEFINE(HAVE_FUNCNAME__FUNCTION, 1,
|
|
[Define to 1 if your compiler understands __FUNCTION__.])
|
|
fi
|
|
fi])# PGAC_C_FUNCNAME_SUPPORT
|
|
|
|
|
|
|
|
# PGAC_C_STATIC_ASSERT
|
|
# --------------------
|
|
# Check if the C compiler understands _Static_assert(),
|
|
# and define HAVE__STATIC_ASSERT if so.
|
|
#
|
|
# We actually check the syntax ({ _Static_assert(...) }), because we need
|
|
# gcc-style compound expressions to be able to wrap the thing into macros.
|
|
AC_DEFUN([PGAC_C_STATIC_ASSERT],
|
|
[AC_CACHE_CHECK(for _Static_assert, pgac_cv__static_assert,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[({ _Static_assert(1, "foo"); })])],
|
|
[pgac_cv__static_assert=yes],
|
|
[pgac_cv__static_assert=no])])
|
|
if test x"$pgac_cv__static_assert" = xyes ; then
|
|
AC_DEFINE(HAVE__STATIC_ASSERT, 1,
|
|
[Define to 1 if your compiler understands _Static_assert.])
|
|
fi])# PGAC_C_STATIC_ASSERT
|
|
|
|
|
|
|
|
# PGAC_C_TYPEOF
|
|
# -------------
|
|
# Check if the C compiler understands typeof or a variant. Define
|
|
# HAVE_TYPEOF if so, and define 'typeof' to the actual key word.
|
|
#
|
|
AC_DEFUN([PGAC_C_TYPEOF],
|
|
[AC_CACHE_CHECK(for typeof, pgac_cv_c_typeof,
|
|
[pgac_cv_c_typeof=no
|
|
for pgac_kw in typeof __typeof__ decltype; do
|
|
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
|
|
[int x = 0;
|
|
$pgac_kw(x) y;
|
|
y = x;
|
|
return y;])],
|
|
[pgac_cv_c_typeof=$pgac_kw])
|
|
test "$pgac_cv_c_typeof" != no && break
|
|
done])
|
|
if test "$pgac_cv_c_typeof" != no; then
|
|
AC_DEFINE(HAVE_TYPEOF, 1,
|
|
[Define to 1 if your compiler understands `typeof' or something similar.])
|
|
if test "$pgac_cv_c_typeof" != typeof; then
|
|
AC_DEFINE_UNQUOTED(typeof, $pgac_cv_c_typeof, [Define to how the compiler spells `typeof'.])
|
|
fi
|
|
fi])# PGAC_C_TYPEOF
|
|
|
|
|
|
|
|
# PGAC_C_TYPES_COMPATIBLE
|
|
# -----------------------
|
|
# Check if the C compiler understands __builtin_types_compatible_p,
|
|
# and define HAVE__BUILTIN_TYPES_COMPATIBLE_P if so.
|
|
#
|
|
# We check usage with __typeof__, though it's unlikely any compiler would
|
|
# have the former and not the latter.
|
|
AC_DEFUN([PGAC_C_TYPES_COMPATIBLE],
|
|
[AC_CACHE_CHECK(for __builtin_types_compatible_p, pgac_cv__types_compatible,
|
|
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
|
|
[[ int x; static int y[__builtin_types_compatible_p(__typeof__(x), int)]; ]])],
|
|
[pgac_cv__types_compatible=yes],
|
|
[pgac_cv__types_compatible=no])])
|
|
if test x"$pgac_cv__types_compatible" = xyes ; then
|
|
AC_DEFINE(HAVE__BUILTIN_TYPES_COMPATIBLE_P, 1,
|
|
[Define to 1 if your compiler understands __builtin_types_compatible_p.])
|
|
fi])# PGAC_C_TYPES_COMPATIBLE
|
|
|
|
|
|
# PGAC_C_BUILTIN_CONSTANT_P
|
|
# -------------------------
|
|
# Check if the C compiler understands __builtin_constant_p(),
|
|
# and define HAVE__BUILTIN_CONSTANT_P if so.
|
|
# We need __builtin_constant_p("string literal") to be true, but some older
|
|
# compilers don't think that, so test for that case explicitly.
|
|
AC_DEFUN([PGAC_C_BUILTIN_CONSTANT_P],
|
|
[AC_CACHE_CHECK(for __builtin_constant_p, pgac_cv__builtin_constant_p,
|
|
[AC_COMPILE_IFELSE([AC_LANG_SOURCE(
|
|
[[static int x;
|
|
static int y[__builtin_constant_p(x) ? x : 1];
|
|
static int z[__builtin_constant_p("string literal") ? 1 : x];
|
|
]]
|
|
)],
|
|
[pgac_cv__builtin_constant_p=yes],
|
|
[pgac_cv__builtin_constant_p=no])])
|
|
if test x"$pgac_cv__builtin_constant_p" = xyes ; then
|
|
AC_DEFINE(HAVE__BUILTIN_CONSTANT_P, 1,
|
|
[Define to 1 if your compiler understands __builtin_constant_p.])
|
|
fi])# PGAC_C_BUILTIN_CONSTANT_P
|
|
|
|
|
|
|
|
# PGAC_C_BUILTIN_OP_OVERFLOW
|
|
# -------------------------
|
|
# Check if the C compiler understands __builtin_$op_overflow(),
|
|
# and define HAVE__BUILTIN_OP_OVERFLOW if so.
|
|
#
|
|
# Check for the most complicated case, 64 bit multiplication, as a
|
|
# proxy for all of the operations. To detect the case where the compiler
|
|
# knows the function but library support is missing, we must link not just
|
|
# compile, and store the results in global variables so the compiler doesn't
|
|
# optimize away the call.
|
|
AC_DEFUN([PGAC_C_BUILTIN_OP_OVERFLOW],
|
|
[AC_CACHE_CHECK(for __builtin_mul_overflow, pgac_cv__builtin_op_overflow,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
|
|
PG_INT64_TYPE a = 1;
|
|
PG_INT64_TYPE b = 1;
|
|
PG_INT64_TYPE result;
|
|
int oflo;
|
|
],
|
|
[oflo = __builtin_mul_overflow(a, b, &result);])],
|
|
[pgac_cv__builtin_op_overflow=yes],
|
|
[pgac_cv__builtin_op_overflow=no])])
|
|
if test x"$pgac_cv__builtin_op_overflow" = xyes ; then
|
|
AC_DEFINE(HAVE__BUILTIN_OP_OVERFLOW, 1,
|
|
[Define to 1 if your compiler understands __builtin_$op_overflow.])
|
|
fi])# PGAC_C_BUILTIN_OP_OVERFLOW
|
|
|
|
|
|
|
|
# PGAC_C_BUILTIN_UNREACHABLE
|
|
# --------------------------
|
|
# Check if the C compiler understands __builtin_unreachable(),
|
|
# and define HAVE__BUILTIN_UNREACHABLE if so.
|
|
#
|
|
# NB: Don't get the idea of putting a for(;;); or such before the
|
|
# __builtin_unreachable() call. Some compilers would remove it before linking
|
|
# and only a warning instead of an error would be produced.
|
|
AC_DEFUN([PGAC_C_BUILTIN_UNREACHABLE],
|
|
[AC_CACHE_CHECK(for __builtin_unreachable, pgac_cv__builtin_unreachable,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[__builtin_unreachable();])],
|
|
[pgac_cv__builtin_unreachable=yes],
|
|
[pgac_cv__builtin_unreachable=no])])
|
|
if test x"$pgac_cv__builtin_unreachable" = xyes ; then
|
|
AC_DEFINE(HAVE__BUILTIN_UNREACHABLE, 1,
|
|
[Define to 1 if your compiler understands __builtin_unreachable.])
|
|
fi])# PGAC_C_BUILTIN_UNREACHABLE
|
|
|
|
|
|
|
|
# PGAC_C_COMPUTED_GOTO
|
|
# -----------------------
|
|
# Check if the C compiler knows computed gotos (gcc extension, also
|
|
# available in at least clang). If so, define HAVE_COMPUTED_GOTO.
|
|
#
|
|
# Checking whether computed gotos are supported syntax-wise ought to
|
|
# be enough, as the syntax is otherwise illegal.
|
|
AC_DEFUN([PGAC_C_COMPUTED_GOTO],
|
|
[AC_CACHE_CHECK(for computed goto support, pgac_cv_computed_goto,
|
|
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
|
|
[[void *labeladdrs[] = {&&my_label};
|
|
goto *labeladdrs[0];
|
|
my_label:
|
|
return 1;
|
|
]])],
|
|
[pgac_cv_computed_goto=yes],
|
|
[pgac_cv_computed_goto=no])])
|
|
if test x"$pgac_cv_computed_goto" = xyes ; then
|
|
AC_DEFINE(HAVE_COMPUTED_GOTO, 1,
|
|
[Define to 1 if your compiler handles computed gotos.])
|
|
fi])# PGAC_C_COMPUTED_GOTO
|
|
|
|
|
|
|
|
# PGAC_CHECK_BUILTIN_FUNC
|
|
# -----------------------
|
|
# This is similar to AC_CHECK_FUNCS(), except that it will work for compiler
|
|
# builtin functions, as that usually fails to.
|
|
# The first argument is the function name, eg [__builtin_clzl], and the
|
|
# second is its argument list, eg [unsigned long x]. The current coding
|
|
# works only for a single argument named x; we might generalize that later.
|
|
# It's assumed that the function's result type is coercible to int.
|
|
# On success, we define "HAVEfuncname" (there's usually more than enough
|
|
# underscores already, so we don't add another one).
|
|
AC_DEFUN([PGAC_CHECK_BUILTIN_FUNC],
|
|
[AC_CACHE_CHECK(for $1, pgac_cv$1,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
|
|
int
|
|
call$1($2)
|
|
{
|
|
return $1(x);
|
|
}], [])],
|
|
[pgac_cv$1=yes],
|
|
[pgac_cv$1=no])])
|
|
if test x"${pgac_cv$1}" = xyes ; then
|
|
AC_DEFINE_UNQUOTED(AS_TR_CPP([HAVE$1]), 1,
|
|
[Define to 1 if your compiler understands $1.])
|
|
fi])# PGAC_CHECK_BUILTIN_FUNC
|
|
|
|
|
|
|
|
# PGAC_PROG_VARCC_VARFLAGS_OPT
|
|
# -----------------------
|
|
# Given a compiler, variable name and a string, check if the compiler
|
|
# supports the string as a command-line option. If it does, add the
|
|
# string to the given variable.
|
|
AC_DEFUN([PGAC_PROG_VARCC_VARFLAGS_OPT],
|
|
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_$1_cflags_$3])])dnl
|
|
AC_CACHE_CHECK([whether ${$1} supports $3, for $2], [Ac_cachevar],
|
|
[pgac_save_CFLAGS=$CFLAGS
|
|
pgac_save_CC=$CC
|
|
CC=${$1}
|
|
CFLAGS="${$2} $3"
|
|
ac_save_c_werror_flag=$ac_c_werror_flag
|
|
ac_c_werror_flag=yes
|
|
_AC_COMPILE_IFELSE([AC_LANG_PROGRAM()],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no])
|
|
ac_c_werror_flag=$ac_save_c_werror_flag
|
|
CFLAGS="$pgac_save_CFLAGS"
|
|
CC="$pgac_save_CC"])
|
|
if test x"$Ac_cachevar" = x"yes"; then
|
|
$2="${$2} $3"
|
|
fi
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_PROG_VARCC_VARFLAGS_OPT
|
|
|
|
|
|
|
|
# PGAC_PROG_CC_CFLAGS_OPT
|
|
# -----------------------
|
|
# Given a string, check if the compiler supports the string as a
|
|
# command-line option. If it does, add the string to CFLAGS.
|
|
AC_DEFUN([PGAC_PROG_CC_CFLAGS_OPT], [
|
|
PGAC_PROG_VARCC_VARFLAGS_OPT(CC, CFLAGS, $1)
|
|
])# PGAC_PROG_CC_CFLAGS_OPT
|
|
|
|
|
|
|
|
# PGAC_PROG_CC_VAR_OPT
|
|
# -----------------------
|
|
# Given a variable name and a string, check if the compiler supports
|
|
# the string as a command-line option. If it does, add the string to
|
|
# the given variable.
|
|
AC_DEFUN([PGAC_PROG_CC_VAR_OPT],
|
|
[PGAC_PROG_VARCC_VARFLAGS_OPT(CC, $1, $2)
|
|
])# PGAC_PROG_CC_VAR_OPT
|
|
|
|
|
|
|
|
# PGAC_PROG_VARCXX_VARFLAGS_OPT
|
|
# -----------------------
|
|
# Given a compiler, variable name and a string, check if the compiler
|
|
# supports the string as a command-line option. If it does, add the
|
|
# string to the given variable.
|
|
AC_DEFUN([PGAC_PROG_VARCXX_VARFLAGS_OPT],
|
|
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_$1_cxxflags_$3])])dnl
|
|
AC_CACHE_CHECK([whether ${$1} supports $3, for $2], [Ac_cachevar],
|
|
[pgac_save_CXXFLAGS=$CXXFLAGS
|
|
pgac_save_CXX=$CXX
|
|
CXX=${$1}
|
|
CXXFLAGS="${$2} $3"
|
|
ac_save_cxx_werror_flag=$ac_cxx_werror_flag
|
|
ac_cxx_werror_flag=yes
|
|
AC_LANG_PUSH(C++)
|
|
_AC_COMPILE_IFELSE([AC_LANG_PROGRAM()],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no])
|
|
AC_LANG_POP([])
|
|
ac_cxx_werror_flag=$ac_save_cxx_werror_flag
|
|
CXXFLAGS="$pgac_save_CXXFLAGS"
|
|
CXX="$pgac_save_CXX"])
|
|
if test x"$Ac_cachevar" = x"yes"; then
|
|
$2="${$2} $3"
|
|
fi
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_PROG_VARCXX_VARFLAGS_OPT
|
|
|
|
|
|
|
|
# PGAC_PROG_CXX_CFLAGS_OPT
|
|
# -----------------------
|
|
# Given a string, check if the compiler supports the string as a
|
|
# command-line option. If it does, add the string to CXXFLAGS.
|
|
AC_DEFUN([PGAC_PROG_CXX_CFLAGS_OPT],
|
|
[PGAC_PROG_VARCXX_VARFLAGS_OPT(CXX, CXXFLAGS, $1)
|
|
])# PGAC_PROG_CXX_VAR_OPT
|
|
|
|
|
|
|
|
# PGAC_PROG_CC_LDFLAGS_OPT
|
|
# ------------------------
|
|
# Given a string, check if the compiler supports the string as a
|
|
# command-line option. If it does, add the string to LDFLAGS.
|
|
# For reasons you'd really rather not know about, this checks whether
|
|
# you can link to a particular function, not just whether you can link.
|
|
# In fact, we must actually check that the resulting program runs :-(
|
|
AC_DEFUN([PGAC_PROG_CC_LDFLAGS_OPT],
|
|
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_cc_ldflags_$1])])dnl
|
|
AC_CACHE_CHECK([whether $CC supports $1], [Ac_cachevar],
|
|
[pgac_save_LDFLAGS=$LDFLAGS
|
|
LDFLAGS="$pgac_save_LDFLAGS $1"
|
|
AC_RUN_IFELSE([AC_LANG_PROGRAM([extern void $2 (); void (*fptr) () = $2;],[])],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no],
|
|
[Ac_cachevar="assuming no"])
|
|
LDFLAGS="$pgac_save_LDFLAGS"])
|
|
if test x"$Ac_cachevar" = x"yes"; then
|
|
LDFLAGS="$LDFLAGS $1"
|
|
fi
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_PROG_CC_LDFLAGS_OPT
|
|
|
|
# PGAC_HAVE_GCC__SYNC_CHAR_TAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __sync_lock_test_and_set(char),
|
|
# and define HAVE_GCC__SYNC_CHAR_TAS
|
|
#
|
|
# NB: There are platforms where test_and_set is available but compare_and_swap
|
|
# is not, so test this separately.
|
|
# NB: Some platforms only do 32bit tas, others only do 8bit tas. Test both.
|
|
AC_DEFUN([PGAC_HAVE_GCC__SYNC_CHAR_TAS],
|
|
[AC_CACHE_CHECK(for builtin __sync char locking functions, pgac_cv_gcc_sync_char_tas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[char lock = 0;
|
|
__sync_lock_test_and_set(&lock, 1);
|
|
__sync_lock_release(&lock);])],
|
|
[pgac_cv_gcc_sync_char_tas="yes"],
|
|
[pgac_cv_gcc_sync_char_tas="no"])])
|
|
if test x"$pgac_cv_gcc_sync_char_tas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__SYNC_CHAR_TAS, 1, [Define to 1 if you have __sync_lock_test_and_set(char *) and friends.])
|
|
fi])# PGAC_HAVE_GCC__SYNC_CHAR_TAS
|
|
|
|
# PGAC_HAVE_GCC__SYNC_INT32_TAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __sync_lock_test_and_set(),
|
|
# and define HAVE_GCC__SYNC_INT32_TAS
|
|
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT32_TAS],
|
|
[AC_CACHE_CHECK(for builtin __sync int32 locking functions, pgac_cv_gcc_sync_int32_tas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[int lock = 0;
|
|
__sync_lock_test_and_set(&lock, 1);
|
|
__sync_lock_release(&lock);])],
|
|
[pgac_cv_gcc_sync_int32_tas="yes"],
|
|
[pgac_cv_gcc_sync_int32_tas="no"])])
|
|
if test x"$pgac_cv_gcc_sync_int32_tas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__SYNC_INT32_TAS, 1, [Define to 1 if you have __sync_lock_test_and_set(int *) and friends.])
|
|
fi])# PGAC_HAVE_GCC__SYNC_INT32_TAS
|
|
|
|
# PGAC_HAVE_GCC__SYNC_INT32_CAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __sync_compare_and_swap() for 32bit
|
|
# types, and define HAVE_GCC__SYNC_INT32_CAS if so.
|
|
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT32_CAS],
|
|
[AC_CACHE_CHECK(for builtin __sync int32 atomic operations, pgac_cv_gcc_sync_int32_cas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[int val = 0;
|
|
__sync_val_compare_and_swap(&val, 0, 37);])],
|
|
[pgac_cv_gcc_sync_int32_cas="yes"],
|
|
[pgac_cv_gcc_sync_int32_cas="no"])])
|
|
if test x"$pgac_cv_gcc_sync_int32_cas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__SYNC_INT32_CAS, 1, [Define to 1 if you have __sync_val_compare_and_swap(int *, int, int).])
|
|
fi])# PGAC_HAVE_GCC__SYNC_INT32_CAS
|
|
|
|
# PGAC_HAVE_GCC__SYNC_INT64_CAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __sync_compare_and_swap() for 64bit
|
|
# types, and define HAVE_GCC__SYNC_INT64_CAS if so.
|
|
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT64_CAS],
|
|
[AC_CACHE_CHECK(for builtin __sync int64 atomic operations, pgac_cv_gcc_sync_int64_cas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[PG_INT64_TYPE lock = 0;
|
|
__sync_val_compare_and_swap(&lock, 0, (PG_INT64_TYPE) 37);])],
|
|
[pgac_cv_gcc_sync_int64_cas="yes"],
|
|
[pgac_cv_gcc_sync_int64_cas="no"])])
|
|
if test x"$pgac_cv_gcc_sync_int64_cas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__SYNC_INT64_CAS, 1, [Define to 1 if you have __sync_val_compare_and_swap(int64 *, int64, int64).])
|
|
fi])# PGAC_HAVE_GCC__SYNC_INT64_CAS
|
|
|
|
# PGAC_HAVE_GCC__ATOMIC_INT32_CAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __atomic_compare_exchange_n() for 32bit
|
|
# types, and define HAVE_GCC__ATOMIC_INT32_CAS if so.
|
|
AC_DEFUN([PGAC_HAVE_GCC__ATOMIC_INT32_CAS],
|
|
[AC_CACHE_CHECK(for builtin __atomic int32 atomic operations, pgac_cv_gcc_atomic_int32_cas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[int val = 0;
|
|
int expect = 0;
|
|
__atomic_compare_exchange_n(&val, &expect, 37, 0, __ATOMIC_SEQ_CST, __ATOMIC_RELAXED);])],
|
|
[pgac_cv_gcc_atomic_int32_cas="yes"],
|
|
[pgac_cv_gcc_atomic_int32_cas="no"])])
|
|
if test x"$pgac_cv_gcc_atomic_int32_cas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__ATOMIC_INT32_CAS, 1, [Define to 1 if you have __atomic_compare_exchange_n(int *, int *, int).])
|
|
fi])# PGAC_HAVE_GCC__ATOMIC_INT32_CAS
|
|
|
|
# PGAC_HAVE_GCC__ATOMIC_INT64_CAS
|
|
# -------------------------
|
|
# Check if the C compiler understands __atomic_compare_exchange_n() for 64bit
|
|
# types, and define HAVE_GCC__ATOMIC_INT64_CAS if so.
|
|
AC_DEFUN([PGAC_HAVE_GCC__ATOMIC_INT64_CAS],
|
|
[AC_CACHE_CHECK(for builtin __atomic int64 atomic operations, pgac_cv_gcc_atomic_int64_cas,
|
|
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
|
|
[PG_INT64_TYPE val = 0;
|
|
PG_INT64_TYPE expect = 0;
|
|
__atomic_compare_exchange_n(&val, &expect, 37, 0, __ATOMIC_SEQ_CST, __ATOMIC_RELAXED);])],
|
|
[pgac_cv_gcc_atomic_int64_cas="yes"],
|
|
[pgac_cv_gcc_atomic_int64_cas="no"])])
|
|
if test x"$pgac_cv_gcc_atomic_int64_cas" = x"yes"; then
|
|
AC_DEFINE(HAVE_GCC__ATOMIC_INT64_CAS, 1, [Define to 1 if you have __atomic_compare_exchange_n(int64 *, int64 *, int64).])
|
|
fi])# PGAC_HAVE_GCC__ATOMIC_INT64_CAS
|
|
|
|
# PGAC_SSE42_CRC32_INTRINSICS
|
|
# -----------------------
|
|
# Check if the compiler supports the x86 CRC instructions added in SSE 4.2,
|
|
# using the _mm_crc32_u8 and _mm_crc32_u32 intrinsic functions. (We don't
|
|
# test the 8-byte variant, _mm_crc32_u64, but it is assumed to be present if
|
|
# the other ones are, on x86-64 platforms)
|
|
#
|
|
# An optional compiler flag can be passed as argument (e.g. -msse4.2). If the
|
|
# intrinsics are supported, sets pgac_sse42_crc32_intrinsics, and CFLAGS_SSE42.
|
|
AC_DEFUN([PGAC_SSE42_CRC32_INTRINSICS],
|
|
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_sse42_crc32_intrinsics_$1])])dnl
|
|
AC_CACHE_CHECK([for _mm_crc32_u8 and _mm_crc32_u32 with CFLAGS=$1], [Ac_cachevar],
|
|
[pgac_save_CFLAGS=$CFLAGS
|
|
CFLAGS="$pgac_save_CFLAGS $1"
|
|
AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <nmmintrin.h>],
|
|
[unsigned int crc = 0;
|
|
crc = _mm_crc32_u8(crc, 0);
|
|
crc = _mm_crc32_u32(crc, 0);
|
|
/* return computed value, to prevent the above being optimized away */
|
|
return crc == 0;])],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no])
|
|
CFLAGS="$pgac_save_CFLAGS"])
|
|
if test x"$Ac_cachevar" = x"yes"; then
|
|
CFLAGS_SSE42="$1"
|
|
pgac_sse42_crc32_intrinsics=yes
|
|
fi
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_SSE42_CRC32_INTRINSICS
|
|
|
|
|
|
# PGAC_ARMV8_CRC32C_INTRINSICS
|
|
# -----------------------
|
|
# Check if the compiler supports the CRC32C instructions using the __crc32cb,
|
|
# __crc32ch, __crc32cw, and __crc32cd intrinsic functions. These instructions
|
|
# were first introduced in ARMv8 in the optional CRC Extension, and became
|
|
# mandatory in ARMv8.1.
|
|
#
|
|
# An optional compiler flag can be passed as argument (e.g.
|
|
# -march=armv8-a+crc). If the intrinsics are supported, sets
|
|
# pgac_armv8_crc32c_intrinsics, and CFLAGS_ARMV8_CRC32C.
|
|
AC_DEFUN([PGAC_ARMV8_CRC32C_INTRINSICS],
|
|
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_armv8_crc32c_intrinsics_$1])])dnl
|
|
AC_CACHE_CHECK([for __crc32cb, __crc32ch, __crc32cw, and __crc32cd with CFLAGS=$1], [Ac_cachevar],
|
|
[pgac_save_CFLAGS=$CFLAGS
|
|
CFLAGS="$pgac_save_CFLAGS $1"
|
|
AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <arm_acle.h>],
|
|
[unsigned int crc = 0;
|
|
crc = __crc32cb(crc, 0);
|
|
crc = __crc32ch(crc, 0);
|
|
crc = __crc32cw(crc, 0);
|
|
crc = __crc32cd(crc, 0);
|
|
/* return computed value, to prevent the above being optimized away */
|
|
return crc == 0;])],
|
|
[Ac_cachevar=yes],
|
|
[Ac_cachevar=no])
|
|
CFLAGS="$pgac_save_CFLAGS"])
|
|
if test x"$Ac_cachevar" = x"yes"; then
|
|
CFLAGS_ARMV8_CRC32C="$1"
|
|
pgac_armv8_crc32c_intrinsics=yes
|
|
fi
|
|
undefine([Ac_cachevar])dnl
|
|
])# PGAC_ARMV8_CRC32C_INTRINSICS
|