postgresql/config/c-compiler.m4
Tom Lane 02a6a54ecd Make use of compiler builtins and/or assembly for CLZ, CTZ, POPCNT.
Test for the compiler builtins __builtin_clz, __builtin_ctz, and
__builtin_popcount, and make use of these in preference to
handwritten C code if they're available.  Create src/port
infrastructure for "leftmost one", "rightmost one", and "popcount"
so as to centralize these decisions.

On x86_64, __builtin_popcount generally won't make use of the POPCNT
opcode because that's not universally supported yet.  Provide code
that checks CPUID and then calls POPCNT via asm() if available.
This requires indirecting through a function pointer, which is
an annoying amount of overhead for a one-instruction operation,
but it's probably not worth working harder than this for our
current use-cases.

I'm not sure we've found all the existing places that could profit
from this new infrastructure; but we at least touched all the
ones that used copied-and-pasted versions of the bitmapset.c code,
and got rid of multiple copies of the associated constant arrays.

While at it, replace c-compiler.m4's one-per-builtin-function
macros with a single one that can handle all the cases we need
to worry about so far.  Also, because I'm paranoid, make those
checks into AC_LINK checks rather than just AC_COMPILE; the
former coding failed to verify that libgcc has support for the
builtin, in cases where it's not inline code.

David Rowley, Thomas Munro, Alvaro Herrera, Tom Lane

Discussion: https://postgr.es/m/CAKJS1f9WTAGG1tPeJnD18hiQW5gAk59fQ6WK-vfdAKEHyRg2RA@mail.gmail.com
2019-02-15 23:22:33 -05:00

671 lines
24 KiB
Text

# Macros to detect C compiler features
# config/c-compiler.m4
# PGAC_C_SIGNED
# -------------
# Check if the C compiler understands signed types.
AC_DEFUN([PGAC_C_SIGNED],
[AC_CACHE_CHECK(for signed types, pgac_cv_c_signed,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
[signed char c; signed short s; signed int i;])],
[pgac_cv_c_signed=yes],
[pgac_cv_c_signed=no])])
if test x"$pgac_cv_c_signed" = xno ; then
AC_DEFINE(signed,, [Define to empty if the C compiler does not understand signed types.])
fi])# PGAC_C_SIGNED
# PGAC_C_PRINTF_ARCHETYPE
# -----------------------
# Select the format archetype to be used by gcc to check printf-type functions.
# We prefer "gnu_printf", as that most closely matches the features supported
# by src/port/snprintf.c (particularly the %m conversion spec). However,
# on some NetBSD versions, that doesn't work while "__syslog__" does.
# If all else fails, use "printf".
AC_DEFUN([PGAC_PRINTF_ARCHETYPE],
[AC_CACHE_CHECK([for printf format archetype], pgac_cv_printf_archetype,
[pgac_cv_printf_archetype=gnu_printf
PGAC_TEST_PRINTF_ARCHETYPE
if [[ "$ac_archetype_ok" = no ]]; then
pgac_cv_printf_archetype=__syslog__
PGAC_TEST_PRINTF_ARCHETYPE
if [[ "$ac_archetype_ok" = no ]]; then
pgac_cv_printf_archetype=printf
fi
fi])
AC_DEFINE_UNQUOTED([PG_PRINTF_ATTRIBUTE], [$pgac_cv_printf_archetype],
[Define to best printf format archetype, usually gnu_printf if available.])
])# PGAC_PRINTF_ARCHETYPE
# Subroutine: test $pgac_cv_printf_archetype, set $ac_archetype_ok to yes or no
AC_DEFUN([PGAC_TEST_PRINTF_ARCHETYPE],
[ac_save_c_werror_flag=$ac_c_werror_flag
ac_c_werror_flag=yes
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
[extern void pgac_write(int ignore, const char *fmt,...)
__attribute__((format($pgac_cv_printf_archetype, 2, 3)));],
[pgac_write(0, "error %s: %m", "foo");])],
[ac_archetype_ok=yes],
[ac_archetype_ok=no])
ac_c_werror_flag=$ac_save_c_werror_flag
])# PGAC_TEST_PRINTF_ARCHETYPE
# PGAC_TYPE_64BIT_INT(TYPE)
# -------------------------
# Check if TYPE is a working 64 bit integer type. Set HAVE_TYPE_64 to
# yes or no respectively, and define HAVE_TYPE_64 if yes.
AC_DEFUN([PGAC_TYPE_64BIT_INT],
[define([Ac_define], [translit([have_$1_64], [a-z *], [A-Z_P])])dnl
define([Ac_cachevar], [translit([pgac_cv_type_$1_64], [ *], [_p])])dnl
AC_CACHE_CHECK([whether $1 is 64 bits], [Ac_cachevar],
[AC_RUN_IFELSE([AC_LANG_SOURCE(
[typedef $1 ac_int64;
/*
* These are globals to discourage the compiler from folding all the
* arithmetic tests down to compile-time constants.
*/
ac_int64 a = 20000001;
ac_int64 b = 40000005;
int does_int64_work()
{
ac_int64 c,d;
if (sizeof(ac_int64) != 8)
return 0; /* definitely not the right size */
/* Do perfunctory checks to see if 64-bit arithmetic seems to work */
c = a * b;
d = (c + b) / b;
if (d != a+1)
return 0;
return 1;
}
int
main() {
return (! does_int64_work());
}])],
[Ac_cachevar=yes],
[Ac_cachevar=no],
[# If cross-compiling, check the size reported by the compiler and
# trust that the arithmetic works.
AC_COMPILE_IFELSE([AC_LANG_BOOL_COMPILE_TRY([], [sizeof($1) == 8])],
Ac_cachevar=yes,
Ac_cachevar=no)])])
Ac_define=$Ac_cachevar
if test x"$Ac_cachevar" = xyes ; then
AC_DEFINE(Ac_define, 1, [Define to 1 if `]$1[' works and is 64 bits.])
fi
undefine([Ac_define])dnl
undefine([Ac_cachevar])dnl
])# PGAC_TYPE_64BIT_INT
# PGAC_TYPE_128BIT_INT
# ---------------------
# Check if __int128 is a working 128 bit integer type, and if so
# define PG_INT128_TYPE to that typename, and define ALIGNOF_PG_INT128_TYPE
# as its alignment requirement.
#
# This currently only detects a GCC/clang extension, but support for other
# environments may be added in the future.
#
# For the moment we only test for support for 128bit math; support for
# 128bit literals and snprintf is not required.
AC_DEFUN([PGAC_TYPE_128BIT_INT],
[AC_CACHE_CHECK([for __int128], [pgac_cv__128bit_int],
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
/*
* We don't actually run this test, just link it to verify that any support
* functions needed for __int128 are present.
*
* These are globals to discourage the compiler from folding all the
* arithmetic tests down to compile-time constants. We do not have
* convenient support for 128bit literals at this point...
*/
__int128 a = 48828125;
__int128 b = 97656250;
],[
__int128 c,d;
a = (a << 12) + 1; /* 200000000001 */
b = (b << 12) + 5; /* 400000000005 */
/* try the most relevant arithmetic ops */
c = a * b;
d = (c + b) / b;
/* must use the results, else compiler may optimize arithmetic away */
if (d != a+1)
return 1;
])],
[pgac_cv__128bit_int=yes],
[pgac_cv__128bit_int=no])])
if test x"$pgac_cv__128bit_int" = xyes ; then
# Use of non-default alignment with __int128 tickles bugs in some compilers.
# If not cross-compiling, we can test for bugs and disable use of __int128
# with buggy compilers. If cross-compiling, hope for the best.
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83925
AC_CACHE_CHECK([for __int128 alignment bug], [pgac_cv__128bit_int_bug],
[AC_RUN_IFELSE([AC_LANG_PROGRAM([
/* This must match the corresponding code in c.h: */
#if defined(__GNUC__) || defined(__SUNPRO_C) || defined(__IBMC__)
#define pg_attribute_aligned(a) __attribute__((aligned(a)))
#endif
typedef __int128 int128a
#if defined(pg_attribute_aligned)
pg_attribute_aligned(8)
#endif
;
int128a holder;
void pass_by_val(void *buffer, int128a par) { holder = par; }
],[
long int i64 = 97656225L << 12;
int128a q;
pass_by_val(main, (int128a) i64);
q = (int128a) i64;
if (q != holder)
return 1;
])],
[pgac_cv__128bit_int_bug=ok],
[pgac_cv__128bit_int_bug=broken],
[pgac_cv__128bit_int_bug="assuming ok"])])
if test x"$pgac_cv__128bit_int_bug" != xbroken ; then
AC_DEFINE(PG_INT128_TYPE, __int128, [Define to the name of a signed 128-bit integer type.])
AC_CHECK_ALIGNOF(PG_INT128_TYPE)
fi
fi])# PGAC_TYPE_128BIT_INT
# PGAC_C_FUNCNAME_SUPPORT
# -----------------------
# Check if the C compiler understands __func__ (C99) or __FUNCTION__ (gcc).
# Define HAVE_FUNCNAME__FUNC or HAVE_FUNCNAME__FUNCTION accordingly.
AC_DEFUN([PGAC_C_FUNCNAME_SUPPORT],
[AC_CACHE_CHECK(for __func__, pgac_cv_funcname_func_support,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([#include <stdio.h>],
[printf("%s\n", __func__);])],
[pgac_cv_funcname_func_support=yes],
[pgac_cv_funcname_func_support=no])])
if test x"$pgac_cv_funcname_func_support" = xyes ; then
AC_DEFINE(HAVE_FUNCNAME__FUNC, 1,
[Define to 1 if your compiler understands __func__.])
else
AC_CACHE_CHECK(for __FUNCTION__, pgac_cv_funcname_function_support,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([#include <stdio.h>],
[printf("%s\n", __FUNCTION__);])],
[pgac_cv_funcname_function_support=yes],
[pgac_cv_funcname_function_support=no])])
if test x"$pgac_cv_funcname_function_support" = xyes ; then
AC_DEFINE(HAVE_FUNCNAME__FUNCTION, 1,
[Define to 1 if your compiler understands __FUNCTION__.])
fi
fi])# PGAC_C_FUNCNAME_SUPPORT
# PGAC_C_STATIC_ASSERT
# --------------------
# Check if the C compiler understands _Static_assert(),
# and define HAVE__STATIC_ASSERT if so.
#
# We actually check the syntax ({ _Static_assert(...) }), because we need
# gcc-style compound expressions to be able to wrap the thing into macros.
AC_DEFUN([PGAC_C_STATIC_ASSERT],
[AC_CACHE_CHECK(for _Static_assert, pgac_cv__static_assert,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[({ _Static_assert(1, "foo"); })])],
[pgac_cv__static_assert=yes],
[pgac_cv__static_assert=no])])
if test x"$pgac_cv__static_assert" = xyes ; then
AC_DEFINE(HAVE__STATIC_ASSERT, 1,
[Define to 1 if your compiler understands _Static_assert.])
fi])# PGAC_C_STATIC_ASSERT
# PGAC_C_TYPEOF
# -------------
# Check if the C compiler understands typeof or a variant. Define
# HAVE_TYPEOF if so, and define 'typeof' to the actual key word.
#
AC_DEFUN([PGAC_C_TYPEOF],
[AC_CACHE_CHECK(for typeof, pgac_cv_c_typeof,
[pgac_cv_c_typeof=no
for pgac_kw in typeof __typeof__ decltype; do
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
[int x = 0;
$pgac_kw(x) y;
y = x;
return y;])],
[pgac_cv_c_typeof=$pgac_kw])
test "$pgac_cv_c_typeof" != no && break
done])
if test "$pgac_cv_c_typeof" != no; then
AC_DEFINE(HAVE_TYPEOF, 1,
[Define to 1 if your compiler understands `typeof' or something similar.])
if test "$pgac_cv_c_typeof" != typeof; then
AC_DEFINE_UNQUOTED(typeof, $pgac_cv_c_typeof, [Define to how the compiler spells `typeof'.])
fi
fi])# PGAC_C_TYPEOF
# PGAC_C_TYPES_COMPATIBLE
# -----------------------
# Check if the C compiler understands __builtin_types_compatible_p,
# and define HAVE__BUILTIN_TYPES_COMPATIBLE_P if so.
#
# We check usage with __typeof__, though it's unlikely any compiler would
# have the former and not the latter.
AC_DEFUN([PGAC_C_TYPES_COMPATIBLE],
[AC_CACHE_CHECK(for __builtin_types_compatible_p, pgac_cv__types_compatible,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
[[ int x; static int y[__builtin_types_compatible_p(__typeof__(x), int)]; ]])],
[pgac_cv__types_compatible=yes],
[pgac_cv__types_compatible=no])])
if test x"$pgac_cv__types_compatible" = xyes ; then
AC_DEFINE(HAVE__BUILTIN_TYPES_COMPATIBLE_P, 1,
[Define to 1 if your compiler understands __builtin_types_compatible_p.])
fi])# PGAC_C_TYPES_COMPATIBLE
# PGAC_C_BUILTIN_CONSTANT_P
# -------------------------
# Check if the C compiler understands __builtin_constant_p(),
# and define HAVE__BUILTIN_CONSTANT_P if so.
# We need __builtin_constant_p("string literal") to be true, but some older
# compilers don't think that, so test for that case explicitly.
AC_DEFUN([PGAC_C_BUILTIN_CONSTANT_P],
[AC_CACHE_CHECK(for __builtin_constant_p, pgac_cv__builtin_constant_p,
[AC_COMPILE_IFELSE([AC_LANG_SOURCE(
[[static int x;
static int y[__builtin_constant_p(x) ? x : 1];
static int z[__builtin_constant_p("string literal") ? 1 : x];
]]
)],
[pgac_cv__builtin_constant_p=yes],
[pgac_cv__builtin_constant_p=no])])
if test x"$pgac_cv__builtin_constant_p" = xyes ; then
AC_DEFINE(HAVE__BUILTIN_CONSTANT_P, 1,
[Define to 1 if your compiler understands __builtin_constant_p.])
fi])# PGAC_C_BUILTIN_CONSTANT_P
# PGAC_C_BUILTIN_OP_OVERFLOW
# -------------------------
# Check if the C compiler understands __builtin_$op_overflow(),
# and define HAVE__BUILTIN_OP_OVERFLOW if so.
#
# Check for the most complicated case, 64 bit multiplication, as a
# proxy for all of the operations. To detect the case where the compiler
# knows the function but library support is missing, we must link not just
# compile, and store the results in global variables so the compiler doesn't
# optimize away the call.
AC_DEFUN([PGAC_C_BUILTIN_OP_OVERFLOW],
[AC_CACHE_CHECK(for __builtin_mul_overflow, pgac_cv__builtin_op_overflow,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
PG_INT64_TYPE a = 1;
PG_INT64_TYPE b = 1;
PG_INT64_TYPE result;
int oflo;
],
[oflo = __builtin_mul_overflow(a, b, &result);])],
[pgac_cv__builtin_op_overflow=yes],
[pgac_cv__builtin_op_overflow=no])])
if test x"$pgac_cv__builtin_op_overflow" = xyes ; then
AC_DEFINE(HAVE__BUILTIN_OP_OVERFLOW, 1,
[Define to 1 if your compiler understands __builtin_$op_overflow.])
fi])# PGAC_C_BUILTIN_OP_OVERFLOW
# PGAC_C_BUILTIN_UNREACHABLE
# --------------------------
# Check if the C compiler understands __builtin_unreachable(),
# and define HAVE__BUILTIN_UNREACHABLE if so.
#
# NB: Don't get the idea of putting a for(;;); or such before the
# __builtin_unreachable() call. Some compilers would remove it before linking
# and only a warning instead of an error would be produced.
AC_DEFUN([PGAC_C_BUILTIN_UNREACHABLE],
[AC_CACHE_CHECK(for __builtin_unreachable, pgac_cv__builtin_unreachable,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[__builtin_unreachable();])],
[pgac_cv__builtin_unreachable=yes],
[pgac_cv__builtin_unreachable=no])])
if test x"$pgac_cv__builtin_unreachable" = xyes ; then
AC_DEFINE(HAVE__BUILTIN_UNREACHABLE, 1,
[Define to 1 if your compiler understands __builtin_unreachable.])
fi])# PGAC_C_BUILTIN_UNREACHABLE
# PGAC_C_COMPUTED_GOTO
# -----------------------
# Check if the C compiler knows computed gotos (gcc extension, also
# available in at least clang). If so, define HAVE_COMPUTED_GOTO.
#
# Checking whether computed gotos are supported syntax-wise ought to
# be enough, as the syntax is otherwise illegal.
AC_DEFUN([PGAC_C_COMPUTED_GOTO],
[AC_CACHE_CHECK(for computed goto support, pgac_cv_computed_goto,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],
[[void *labeladdrs[] = {&&my_label};
goto *labeladdrs[0];
my_label:
return 1;
]])],
[pgac_cv_computed_goto=yes],
[pgac_cv_computed_goto=no])])
if test x"$pgac_cv_computed_goto" = xyes ; then
AC_DEFINE(HAVE_COMPUTED_GOTO, 1,
[Define to 1 if your compiler handles computed gotos.])
fi])# PGAC_C_COMPUTED_GOTO
# PGAC_CHECK_BUILTIN_FUNC
# -----------------------
# This is similar to AC_CHECK_FUNCS(), except that it will work for compiler
# builtin functions, as that usually fails to.
# The first argument is the function name, eg [__builtin_clzl], and the
# second is its argument list, eg [unsigned long x]. The current coding
# works only for a single argument named x; we might generalize that later.
# It's assumed that the function's result type is coercible to int.
# On success, we define "HAVEfuncname" (there's usually more than enough
# underscores already, so we don't add another one).
AC_DEFUN([PGAC_CHECK_BUILTIN_FUNC],
[AC_CACHE_CHECK(for $1, pgac_cv$1,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([
int
call$1($2)
{
return $1(x);
}], [])],
[pgac_cv$1=yes],
[pgac_cv$1=no])])
if test x"${pgac_cv$1}" = xyes ; then
AC_DEFINE_UNQUOTED(AS_TR_CPP([HAVE$1]), 1,
[Define to 1 if your compiler understands $1.])
fi])# PGAC_CHECK_BUILTIN_FUNC
# PGAC_PROG_VARCC_VARFLAGS_OPT
# -----------------------
# Given a compiler, variable name and a string, check if the compiler
# supports the string as a command-line option. If it does, add the
# string to the given variable.
AC_DEFUN([PGAC_PROG_VARCC_VARFLAGS_OPT],
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_$1_cflags_$3])])dnl
AC_CACHE_CHECK([whether ${$1} supports $3, for $2], [Ac_cachevar],
[pgac_save_CFLAGS=$CFLAGS
pgac_save_CC=$CC
CC=${$1}
CFLAGS="${$2} $3"
ac_save_c_werror_flag=$ac_c_werror_flag
ac_c_werror_flag=yes
_AC_COMPILE_IFELSE([AC_LANG_PROGRAM()],
[Ac_cachevar=yes],
[Ac_cachevar=no])
ac_c_werror_flag=$ac_save_c_werror_flag
CFLAGS="$pgac_save_CFLAGS"
CC="$pgac_save_CC"])
if test x"$Ac_cachevar" = x"yes"; then
$2="${$2} $3"
fi
undefine([Ac_cachevar])dnl
])# PGAC_PROG_VARCC_VARFLAGS_OPT
# PGAC_PROG_CC_CFLAGS_OPT
# -----------------------
# Given a string, check if the compiler supports the string as a
# command-line option. If it does, add the string to CFLAGS.
AC_DEFUN([PGAC_PROG_CC_CFLAGS_OPT], [
PGAC_PROG_VARCC_VARFLAGS_OPT(CC, CFLAGS, $1)
])# PGAC_PROG_CC_CFLAGS_OPT
# PGAC_PROG_CC_VAR_OPT
# -----------------------
# Given a variable name and a string, check if the compiler supports
# the string as a command-line option. If it does, add the string to
# the given variable.
AC_DEFUN([PGAC_PROG_CC_VAR_OPT],
[PGAC_PROG_VARCC_VARFLAGS_OPT(CC, $1, $2)
])# PGAC_PROG_CC_VAR_OPT
# PGAC_PROG_VARCXX_VARFLAGS_OPT
# -----------------------
# Given a compiler, variable name and a string, check if the compiler
# supports the string as a command-line option. If it does, add the
# string to the given variable.
AC_DEFUN([PGAC_PROG_VARCXX_VARFLAGS_OPT],
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_$1_cxxflags_$3])])dnl
AC_CACHE_CHECK([whether ${$1} supports $3, for $2], [Ac_cachevar],
[pgac_save_CXXFLAGS=$CXXFLAGS
pgac_save_CXX=$CXX
CXX=${$1}
CXXFLAGS="${$2} $3"
ac_save_cxx_werror_flag=$ac_cxx_werror_flag
ac_cxx_werror_flag=yes
AC_LANG_PUSH(C++)
_AC_COMPILE_IFELSE([AC_LANG_PROGRAM()],
[Ac_cachevar=yes],
[Ac_cachevar=no])
AC_LANG_POP([])
ac_cxx_werror_flag=$ac_save_cxx_werror_flag
CXXFLAGS="$pgac_save_CXXFLAGS"
CXX="$pgac_save_CXX"])
if test x"$Ac_cachevar" = x"yes"; then
$2="${$2} $3"
fi
undefine([Ac_cachevar])dnl
])# PGAC_PROG_VARCXX_VARFLAGS_OPT
# PGAC_PROG_CXX_CFLAGS_OPT
# -----------------------
# Given a string, check if the compiler supports the string as a
# command-line option. If it does, add the string to CXXFLAGS.
AC_DEFUN([PGAC_PROG_CXX_CFLAGS_OPT],
[PGAC_PROG_VARCXX_VARFLAGS_OPT(CXX, CXXFLAGS, $1)
])# PGAC_PROG_CXX_VAR_OPT
# PGAC_PROG_CC_LDFLAGS_OPT
# ------------------------
# Given a string, check if the compiler supports the string as a
# command-line option. If it does, add the string to LDFLAGS.
# For reasons you'd really rather not know about, this checks whether
# you can link to a particular function, not just whether you can link.
# In fact, we must actually check that the resulting program runs :-(
AC_DEFUN([PGAC_PROG_CC_LDFLAGS_OPT],
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_prog_cc_ldflags_$1])])dnl
AC_CACHE_CHECK([whether $CC supports $1], [Ac_cachevar],
[pgac_save_LDFLAGS=$LDFLAGS
LDFLAGS="$pgac_save_LDFLAGS $1"
AC_RUN_IFELSE([AC_LANG_PROGRAM([extern void $2 (); void (*fptr) () = $2;],[])],
[Ac_cachevar=yes],
[Ac_cachevar=no],
[Ac_cachevar="assuming no"])
LDFLAGS="$pgac_save_LDFLAGS"])
if test x"$Ac_cachevar" = x"yes"; then
LDFLAGS="$LDFLAGS $1"
fi
undefine([Ac_cachevar])dnl
])# PGAC_PROG_CC_LDFLAGS_OPT
# PGAC_HAVE_GCC__SYNC_CHAR_TAS
# -------------------------
# Check if the C compiler understands __sync_lock_test_and_set(char),
# and define HAVE_GCC__SYNC_CHAR_TAS
#
# NB: There are platforms where test_and_set is available but compare_and_swap
# is not, so test this separately.
# NB: Some platforms only do 32bit tas, others only do 8bit tas. Test both.
AC_DEFUN([PGAC_HAVE_GCC__SYNC_CHAR_TAS],
[AC_CACHE_CHECK(for builtin __sync char locking functions, pgac_cv_gcc_sync_char_tas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[char lock = 0;
__sync_lock_test_and_set(&lock, 1);
__sync_lock_release(&lock);])],
[pgac_cv_gcc_sync_char_tas="yes"],
[pgac_cv_gcc_sync_char_tas="no"])])
if test x"$pgac_cv_gcc_sync_char_tas" = x"yes"; then
AC_DEFINE(HAVE_GCC__SYNC_CHAR_TAS, 1, [Define to 1 if you have __sync_lock_test_and_set(char *) and friends.])
fi])# PGAC_HAVE_GCC__SYNC_CHAR_TAS
# PGAC_HAVE_GCC__SYNC_INT32_TAS
# -------------------------
# Check if the C compiler understands __sync_lock_test_and_set(),
# and define HAVE_GCC__SYNC_INT32_TAS
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT32_TAS],
[AC_CACHE_CHECK(for builtin __sync int32 locking functions, pgac_cv_gcc_sync_int32_tas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[int lock = 0;
__sync_lock_test_and_set(&lock, 1);
__sync_lock_release(&lock);])],
[pgac_cv_gcc_sync_int32_tas="yes"],
[pgac_cv_gcc_sync_int32_tas="no"])])
if test x"$pgac_cv_gcc_sync_int32_tas" = x"yes"; then
AC_DEFINE(HAVE_GCC__SYNC_INT32_TAS, 1, [Define to 1 if you have __sync_lock_test_and_set(int *) and friends.])
fi])# PGAC_HAVE_GCC__SYNC_INT32_TAS
# PGAC_HAVE_GCC__SYNC_INT32_CAS
# -------------------------
# Check if the C compiler understands __sync_compare_and_swap() for 32bit
# types, and define HAVE_GCC__SYNC_INT32_CAS if so.
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT32_CAS],
[AC_CACHE_CHECK(for builtin __sync int32 atomic operations, pgac_cv_gcc_sync_int32_cas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[int val = 0;
__sync_val_compare_and_swap(&val, 0, 37);])],
[pgac_cv_gcc_sync_int32_cas="yes"],
[pgac_cv_gcc_sync_int32_cas="no"])])
if test x"$pgac_cv_gcc_sync_int32_cas" = x"yes"; then
AC_DEFINE(HAVE_GCC__SYNC_INT32_CAS, 1, [Define to 1 if you have __sync_val_compare_and_swap(int *, int, int).])
fi])# PGAC_HAVE_GCC__SYNC_INT32_CAS
# PGAC_HAVE_GCC__SYNC_INT64_CAS
# -------------------------
# Check if the C compiler understands __sync_compare_and_swap() for 64bit
# types, and define HAVE_GCC__SYNC_INT64_CAS if so.
AC_DEFUN([PGAC_HAVE_GCC__SYNC_INT64_CAS],
[AC_CACHE_CHECK(for builtin __sync int64 atomic operations, pgac_cv_gcc_sync_int64_cas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[PG_INT64_TYPE lock = 0;
__sync_val_compare_and_swap(&lock, 0, (PG_INT64_TYPE) 37);])],
[pgac_cv_gcc_sync_int64_cas="yes"],
[pgac_cv_gcc_sync_int64_cas="no"])])
if test x"$pgac_cv_gcc_sync_int64_cas" = x"yes"; then
AC_DEFINE(HAVE_GCC__SYNC_INT64_CAS, 1, [Define to 1 if you have __sync_val_compare_and_swap(int64 *, int64, int64).])
fi])# PGAC_HAVE_GCC__SYNC_INT64_CAS
# PGAC_HAVE_GCC__ATOMIC_INT32_CAS
# -------------------------
# Check if the C compiler understands __atomic_compare_exchange_n() for 32bit
# types, and define HAVE_GCC__ATOMIC_INT32_CAS if so.
AC_DEFUN([PGAC_HAVE_GCC__ATOMIC_INT32_CAS],
[AC_CACHE_CHECK(for builtin __atomic int32 atomic operations, pgac_cv_gcc_atomic_int32_cas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[int val = 0;
int expect = 0;
__atomic_compare_exchange_n(&val, &expect, 37, 0, __ATOMIC_SEQ_CST, __ATOMIC_RELAXED);])],
[pgac_cv_gcc_atomic_int32_cas="yes"],
[pgac_cv_gcc_atomic_int32_cas="no"])])
if test x"$pgac_cv_gcc_atomic_int32_cas" = x"yes"; then
AC_DEFINE(HAVE_GCC__ATOMIC_INT32_CAS, 1, [Define to 1 if you have __atomic_compare_exchange_n(int *, int *, int).])
fi])# PGAC_HAVE_GCC__ATOMIC_INT32_CAS
# PGAC_HAVE_GCC__ATOMIC_INT64_CAS
# -------------------------
# Check if the C compiler understands __atomic_compare_exchange_n() for 64bit
# types, and define HAVE_GCC__ATOMIC_INT64_CAS if so.
AC_DEFUN([PGAC_HAVE_GCC__ATOMIC_INT64_CAS],
[AC_CACHE_CHECK(for builtin __atomic int64 atomic operations, pgac_cv_gcc_atomic_int64_cas,
[AC_LINK_IFELSE([AC_LANG_PROGRAM([],
[PG_INT64_TYPE val = 0;
PG_INT64_TYPE expect = 0;
__atomic_compare_exchange_n(&val, &expect, 37, 0, __ATOMIC_SEQ_CST, __ATOMIC_RELAXED);])],
[pgac_cv_gcc_atomic_int64_cas="yes"],
[pgac_cv_gcc_atomic_int64_cas="no"])])
if test x"$pgac_cv_gcc_atomic_int64_cas" = x"yes"; then
AC_DEFINE(HAVE_GCC__ATOMIC_INT64_CAS, 1, [Define to 1 if you have __atomic_compare_exchange_n(int64 *, int64 *, int64).])
fi])# PGAC_HAVE_GCC__ATOMIC_INT64_CAS
# PGAC_SSE42_CRC32_INTRINSICS
# -----------------------
# Check if the compiler supports the x86 CRC instructions added in SSE 4.2,
# using the _mm_crc32_u8 and _mm_crc32_u32 intrinsic functions. (We don't
# test the 8-byte variant, _mm_crc32_u64, but it is assumed to be present if
# the other ones are, on x86-64 platforms)
#
# An optional compiler flag can be passed as argument (e.g. -msse4.2). If the
# intrinsics are supported, sets pgac_sse42_crc32_intrinsics, and CFLAGS_SSE42.
AC_DEFUN([PGAC_SSE42_CRC32_INTRINSICS],
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_sse42_crc32_intrinsics_$1])])dnl
AC_CACHE_CHECK([for _mm_crc32_u8 and _mm_crc32_u32 with CFLAGS=$1], [Ac_cachevar],
[pgac_save_CFLAGS=$CFLAGS
CFLAGS="$pgac_save_CFLAGS $1"
AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <nmmintrin.h>],
[unsigned int crc = 0;
crc = _mm_crc32_u8(crc, 0);
crc = _mm_crc32_u32(crc, 0);
/* return computed value, to prevent the above being optimized away */
return crc == 0;])],
[Ac_cachevar=yes],
[Ac_cachevar=no])
CFLAGS="$pgac_save_CFLAGS"])
if test x"$Ac_cachevar" = x"yes"; then
CFLAGS_SSE42="$1"
pgac_sse42_crc32_intrinsics=yes
fi
undefine([Ac_cachevar])dnl
])# PGAC_SSE42_CRC32_INTRINSICS
# PGAC_ARMV8_CRC32C_INTRINSICS
# -----------------------
# Check if the compiler supports the CRC32C instructions using the __crc32cb,
# __crc32ch, __crc32cw, and __crc32cd intrinsic functions. These instructions
# were first introduced in ARMv8 in the optional CRC Extension, and became
# mandatory in ARMv8.1.
#
# An optional compiler flag can be passed as argument (e.g.
# -march=armv8-a+crc). If the intrinsics are supported, sets
# pgac_armv8_crc32c_intrinsics, and CFLAGS_ARMV8_CRC32C.
AC_DEFUN([PGAC_ARMV8_CRC32C_INTRINSICS],
[define([Ac_cachevar], [AS_TR_SH([pgac_cv_armv8_crc32c_intrinsics_$1])])dnl
AC_CACHE_CHECK([for __crc32cb, __crc32ch, __crc32cw, and __crc32cd with CFLAGS=$1], [Ac_cachevar],
[pgac_save_CFLAGS=$CFLAGS
CFLAGS="$pgac_save_CFLAGS $1"
AC_LINK_IFELSE([AC_LANG_PROGRAM([#include <arm_acle.h>],
[unsigned int crc = 0;
crc = __crc32cb(crc, 0);
crc = __crc32ch(crc, 0);
crc = __crc32cw(crc, 0);
crc = __crc32cd(crc, 0);
/* return computed value, to prevent the above being optimized away */
return crc == 0;])],
[Ac_cachevar=yes],
[Ac_cachevar=no])
CFLAGS="$pgac_save_CFLAGS"])
if test x"$Ac_cachevar" = x"yes"; then
CFLAGS_ARMV8_CRC32C="$1"
pgac_armv8_crc32c_intrinsics=yes
fi
undefine([Ac_cachevar])dnl
])# PGAC_ARMV8_CRC32C_INTRINSICS