4bd7bbb6f6
Current btrfs-check will check qgroup consistency, but even when it finds something wrong, the return value is still 0. Fix it by allowing report_qgroups() to return int to indicate qgroup mismatch, and also add extra logic to return no error if qgroup repair is successful. Without this patch, fstests can't detect qgroup corruption by its fsck alone. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1626 lines
37 KiB
C
1626 lines
37 KiB
C
/*
|
|
* Copyright (C) 2014 SUSE. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*
|
|
* Authors: Mark Fasheh <mfasheh@suse.de>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <uuid/uuid.h>
|
|
#include "kerncompat.h"
|
|
#include "radix-tree.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "utils.h"
|
|
#include "kernel-shared/ulist.h"
|
|
#include "rbtree-utils.h"
|
|
#include "transaction.h"
|
|
#include "repair.h"
|
|
|
|
#include "qgroup-verify.h"
|
|
|
|
/*#define QGROUP_VERIFY_DEBUG*/
|
|
static unsigned long tot_extents_scanned = 0;
|
|
|
|
struct qgroup_count;
|
|
static struct qgroup_count *find_count(u64 qgroupid);
|
|
|
|
struct qgroup_info {
|
|
u64 referenced;
|
|
u64 referenced_compressed;
|
|
u64 exclusive;
|
|
u64 exclusive_compressed;
|
|
};
|
|
|
|
struct qgroup_count {
|
|
u64 qgroupid;
|
|
int subvol_exists;
|
|
|
|
struct btrfs_disk_key key;
|
|
struct qgroup_info diskinfo;
|
|
|
|
struct qgroup_info info;
|
|
|
|
struct rb_node rb_node;
|
|
|
|
/* Parents when we are a child group */
|
|
struct list_head groups;
|
|
|
|
/*
|
|
* Children when we are a parent group (not currently used but
|
|
* maintained to mirror kernel handling of qgroups)
|
|
*/
|
|
struct list_head members;
|
|
|
|
u64 cur_refcnt;
|
|
|
|
struct list_head bad_list;
|
|
};
|
|
|
|
static struct counts_tree {
|
|
struct rb_root root;
|
|
unsigned int num_groups;
|
|
unsigned int rescan_running:1;
|
|
unsigned int qgroup_inconsist:1;
|
|
} counts = { .root = RB_ROOT };
|
|
|
|
static LIST_HEAD(bad_qgroups);
|
|
|
|
static struct rb_root by_bytenr = RB_ROOT;
|
|
|
|
/*
|
|
* Glue structure to represent the relations between qgroups. Mirrored
|
|
* from kernel.
|
|
*/
|
|
struct btrfs_qgroup_list {
|
|
struct list_head next_group;
|
|
struct list_head next_member;
|
|
struct qgroup_count *group; /* Parent group */
|
|
struct qgroup_count *member;
|
|
};
|
|
|
|
/* Allow us to reset ref counts during accounting without zeroing each group. */
|
|
static u64 qgroup_seq = 1ULL;
|
|
|
|
static inline void update_cur_refcnt(struct qgroup_count *c)
|
|
{
|
|
if (c->cur_refcnt < qgroup_seq)
|
|
c->cur_refcnt = qgroup_seq;
|
|
c->cur_refcnt++;
|
|
}
|
|
|
|
static inline u64 group_get_cur_refcnt(struct qgroup_count *c)
|
|
{
|
|
if (c->cur_refcnt < qgroup_seq)
|
|
return 0;
|
|
return c->cur_refcnt - qgroup_seq;
|
|
}
|
|
|
|
static void inc_qgroup_seq(int root_count)
|
|
{
|
|
qgroup_seq += root_count + 1;
|
|
}
|
|
|
|
/*
|
|
* List of interior tree blocks. We walk this list after loading the
|
|
* extent tree to resolve implied refs. For each interior node we'll
|
|
* place a shared ref in the ref tree against each child object. This
|
|
* allows the shared ref resolving code to do the actual work later of
|
|
* finding roots to account against.
|
|
*
|
|
* An implied ref is when a tree block has refs on it that may not
|
|
* exist in any of its child nodes. Even though the refs might not
|
|
* exist further down the tree, the fact that our interior node has a
|
|
* ref means we need to account anything below it to all its roots.
|
|
*/
|
|
static struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
|
|
* = tree_block pointer */
|
|
struct tree_block {
|
|
int level;
|
|
u64 num_bytes;
|
|
};
|
|
|
|
struct ref {
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 root;
|
|
|
|
struct rb_node bytenr_node;
|
|
};
|
|
|
|
#ifdef QGROUP_VERIFY_DEBUG
|
|
static void print_ref(struct ref *ref)
|
|
{
|
|
printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
|
|
"root: %llu\n", ref->bytenr, ref->num_bytes,
|
|
ref->parent, ref->root);
|
|
}
|
|
|
|
static void print_all_refs(void)
|
|
{
|
|
unsigned long count = 0;
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
|
|
node = rb_first(&by_bytenr);
|
|
while (node) {
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
|
|
print_ref(ref);
|
|
|
|
count++;
|
|
node = rb_next(node);
|
|
}
|
|
|
|
printf("%lu extents scanned with %lu refs in total.\n",
|
|
tot_extents_scanned, count);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Store by bytenr in rbtree
|
|
*
|
|
* The tree is sorted in ascending order by bytenr, then parent, then
|
|
* root. Since full refs have a parent == 0, those will come before
|
|
* shared refs.
|
|
*/
|
|
static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
|
|
{
|
|
if (bytenr < orig->bytenr)
|
|
return -1;
|
|
if (bytenr > orig->bytenr)
|
|
return 1;
|
|
|
|
if (parent < orig->parent)
|
|
return -1;
|
|
if (parent > orig->parent)
|
|
return 1;
|
|
|
|
if (root < orig->root)
|
|
return -1;
|
|
if (root > orig->root)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* insert a new ref into the tree. returns the existing ref entry
|
|
* if one is already there.
|
|
*/
|
|
static struct ref *insert_ref(struct ref *ref)
|
|
{
|
|
int ret;
|
|
struct rb_node **p = &by_bytenr.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct ref *curr;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
curr = rb_entry(parent, struct ref, bytenr_node);
|
|
|
|
ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
|
|
if (ret < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (ret > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return curr;
|
|
}
|
|
|
|
rb_link_node(&ref->bytenr_node, parent, p);
|
|
rb_insert_color(&ref->bytenr_node, &by_bytenr);
|
|
return ref;
|
|
}
|
|
|
|
/*
|
|
* Partial search, returns the first ref with matching bytenr. Caller
|
|
* can walk forward from there.
|
|
*
|
|
* Leftmost refs will be full refs - this is used to our advantage
|
|
* when resolving roots.
|
|
*/
|
|
static struct ref *find_ref_bytenr(u64 bytenr)
|
|
{
|
|
struct rb_node *n = by_bytenr.rb_node;
|
|
struct ref *ref;
|
|
|
|
while (n) {
|
|
ref = rb_entry(n, struct ref, bytenr_node);
|
|
|
|
if (bytenr < ref->bytenr)
|
|
n = n->rb_left;
|
|
else if (bytenr > ref->bytenr)
|
|
n = n->rb_right;
|
|
else {
|
|
/* Walk to the left to find the first item */
|
|
struct rb_node *node_left = rb_prev(&ref->bytenr_node);
|
|
struct ref *ref_left;
|
|
|
|
while (node_left) {
|
|
ref_left = rb_entry(node_left, struct ref,
|
|
bytenr_node);
|
|
if (ref_left->bytenr != ref->bytenr)
|
|
break;
|
|
ref = ref_left;
|
|
node_left = rb_prev(node_left);
|
|
}
|
|
return ref;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
|
|
{
|
|
struct rb_node *n = by_bytenr.rb_node;
|
|
struct ref *ref;
|
|
int ret;
|
|
|
|
while (n) {
|
|
ref = rb_entry(n, struct ref, bytenr_node);
|
|
|
|
ret = compare_ref(ref, bytenr, root, parent);
|
|
if (ret < 0)
|
|
n = n->rb_left;
|
|
else if (ret > 0)
|
|
n = n->rb_right;
|
|
else
|
|
return ref;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
|
|
{
|
|
struct ref *ref = find_ref(bytenr, root, parent);
|
|
|
|
BUG_ON(parent && root);
|
|
|
|
if (ref == NULL) {
|
|
ref = calloc(1, sizeof(*ref));
|
|
if (ref) {
|
|
ref->bytenr = bytenr;
|
|
ref->root = root;
|
|
ref->parent = parent;
|
|
ref->num_bytes = num_bytes;
|
|
|
|
insert_ref(ref);
|
|
}
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
static void free_ref_node(struct rb_node *node)
|
|
{
|
|
struct ref *ref = rb_entry(node, struct ref, bytenr_node);
|
|
free(ref);
|
|
}
|
|
|
|
FREE_RB_BASED_TREE(ref, free_ref_node);
|
|
|
|
/*
|
|
* Resolves all the possible roots for the ref at parent.
|
|
*/
|
|
static int find_parent_roots(struct ulist *roots, u64 parent)
|
|
{
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
int ret;
|
|
|
|
/*
|
|
* Search the rbtree for the first ref with bytenr == parent.
|
|
* Walk forward so long as bytenr == parent, adding resolved root ids.
|
|
* For each unresolved root, we recurse
|
|
*/
|
|
ref = find_ref_bytenr(parent);
|
|
if (!ref) {
|
|
error("bytenr ref not found for parent %llu",
|
|
(unsigned long long)parent);
|
|
return -EIO;
|
|
}
|
|
node = &ref->bytenr_node;
|
|
if (ref->bytenr != parent) {
|
|
error("found bytenr ref does not match parent: %llu != %llu",
|
|
(unsigned long long)ref->bytenr,
|
|
(unsigned long long)parent);
|
|
return -EIO;
|
|
}
|
|
|
|
{
|
|
/*
|
|
* Random sanity check, are we actually getting the
|
|
* leftmost node?
|
|
*/
|
|
struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
|
|
struct ref *prev;
|
|
|
|
if (prev_node) {
|
|
prev = rb_entry(prev_node, struct ref, bytenr_node);
|
|
if (prev->bytenr == parent) {
|
|
error(
|
|
"unexpected: prev bytenr same as parent: %llu",
|
|
(unsigned long long)parent);
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
do {
|
|
if (ref->root) {
|
|
if (is_fstree(ref->root)) {
|
|
ret = ulist_add(roots, ref->root, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
} else if (ref->parent == ref->bytenr) {
|
|
/*
|
|
* Special loop case for tree reloc tree
|
|
*/
|
|
ref->root = BTRFS_TREE_RELOC_OBJECTID;
|
|
} else {
|
|
ret = find_parent_roots(roots, ref->parent);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == parent);
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int account_one_extent(struct ulist *roots, u64 bytenr, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
u64 id, nr_roots, nr_refs;
|
|
struct qgroup_count *count;
|
|
struct ulist *counts = ulist_alloc(0);
|
|
struct ulist *tmp = ulist_alloc(0);
|
|
struct ulist_iterator uiter;
|
|
struct ulist_iterator tmp_uiter;
|
|
struct ulist_node *unode;
|
|
struct ulist_node *tmp_unode;
|
|
struct btrfs_qgroup_list *glist;
|
|
|
|
if (!counts || !tmp) {
|
|
ulist_free(counts);
|
|
ulist_free(tmp);
|
|
return ENOMEM;
|
|
}
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
BUG_ON(unode->val == 0ULL);
|
|
|
|
/*
|
|
* For each root, find their corresponding tracking group and
|
|
* add it to our qgroups list.
|
|
*/
|
|
count = find_count(unode->val);
|
|
if (!count)
|
|
continue;
|
|
|
|
BUG_ON(!is_fstree(unode->val));
|
|
ret = ulist_add(counts, count->qgroupid, ptr_to_u64(count), 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Now we look for parents (and parents of those...). Use a tmp
|
|
* ulist here to avoid re-walking (and re-incrementing) our
|
|
* already added items on every loop iteration.
|
|
*/
|
|
ulist_reinit(tmp);
|
|
ret = ulist_add(tmp, count->qgroupid, ptr_to_u64(count), 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ULIST_ITER_INIT(&tmp_uiter);
|
|
while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) {
|
|
/* Bump the refcount on a node every time we see it. */
|
|
count = u64_to_ptr(tmp_unode->aux);
|
|
update_cur_refcnt(count);
|
|
|
|
list_for_each_entry(glist, &count->groups, next_group) {
|
|
struct qgroup_count *parent;
|
|
parent = glist->group;
|
|
id = parent->qgroupid;
|
|
|
|
BUG_ON(!count);
|
|
|
|
ret = ulist_add(counts, id, ptr_to_u64(parent),
|
|
0);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = ulist_add(tmp, id, ptr_to_u64(parent),
|
|
0);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now that we have gathered up and counted all the groups, we
|
|
* can add bytes for this ref.
|
|
*/
|
|
nr_roots = roots->nnodes;
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(counts, &uiter))) {
|
|
count = u64_to_ptr(unode->aux);
|
|
|
|
nr_refs = group_get_cur_refcnt(count);
|
|
if (nr_refs) {
|
|
count->info.referenced += num_bytes;
|
|
count->info.referenced_compressed += num_bytes;
|
|
|
|
if (nr_refs == nr_roots) {
|
|
count->info.exclusive += num_bytes;
|
|
count->info.exclusive_compressed += num_bytes;
|
|
}
|
|
}
|
|
#ifdef QGROUP_VERIFY_DEBUG
|
|
printf("account (%llu, %llu), qgroup %llu/%llu, rfer %llu,"
|
|
" excl %llu, refs %llu, roots %llu\n", bytenr, num_bytes,
|
|
btrfs_qgroup_level(count->qgroupid),
|
|
btrfs_qgroup_subvid(count->qgroupid),
|
|
count->info.referenced, count->info.exclusive, nr_refs,
|
|
nr_roots);
|
|
#endif
|
|
}
|
|
|
|
inc_qgroup_seq(roots->nnodes);
|
|
ret = 0;
|
|
out:
|
|
ulist_free(counts);
|
|
ulist_free(tmp);
|
|
return ret;
|
|
}
|
|
|
|
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
|
|
struct ulist *roots);
|
|
/*
|
|
* Account each ref. Walk the refs, for each set of refs in a
|
|
* given bytenr:
|
|
*
|
|
* - add the roots for direct refs to the ref roots ulist
|
|
*
|
|
* - resolve all possible roots for shared refs, insert each
|
|
* of those into ref_roots ulist (this is a recursive process)
|
|
*
|
|
* - With all roots resolved we can account the ref - this is done in
|
|
* account_one_extent().
|
|
*/
|
|
static int account_all_refs(int do_qgroups, u64 search_subvol)
|
|
{
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
u64 bytenr, num_bytes;
|
|
struct ulist *roots = ulist_alloc(0);
|
|
int ret;
|
|
|
|
node = rb_first(&by_bytenr);
|
|
while (node) {
|
|
ulist_reinit(roots);
|
|
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
/*
|
|
* Walk forward through the list of refs for this
|
|
* bytenr, adding roots to our ulist. If it's a full
|
|
* ref, then we have the easy case. Otherwise we need
|
|
* to search for roots.
|
|
*/
|
|
bytenr = ref->bytenr;
|
|
num_bytes = ref->num_bytes;
|
|
do {
|
|
BUG_ON(ref->bytenr != bytenr);
|
|
BUG_ON(ref->num_bytes != num_bytes);
|
|
if (ref->root) {
|
|
if (is_fstree(ref->root)) {
|
|
if (ulist_add(roots, ref->root, 0, 0) < 0)
|
|
goto enomem;
|
|
}
|
|
} else {
|
|
ret = find_parent_roots(roots, ref->parent);
|
|
if (ret < 0)
|
|
goto enomem;
|
|
}
|
|
|
|
/*
|
|
* When we leave this inner loop, node is set
|
|
* to next in our tree and will be turned into
|
|
* a ref object up top
|
|
*/
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == bytenr);
|
|
|
|
if (search_subvol)
|
|
print_subvol_info(search_subvol, bytenr, num_bytes,
|
|
roots);
|
|
|
|
if (!do_qgroups)
|
|
continue;
|
|
|
|
if (account_one_extent(roots, bytenr, num_bytes))
|
|
goto enomem;
|
|
}
|
|
|
|
ulist_free(roots);
|
|
return 0;
|
|
enomem:
|
|
error("Out of memory while accounting refs for qgroups");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static u64 resolve_one_root(u64 bytenr)
|
|
{
|
|
struct ref *ref = find_ref_bytenr(bytenr);
|
|
|
|
BUG_ON(ref == NULL);
|
|
|
|
if (ref->root)
|
|
return ref->root;
|
|
if (ref->parent == bytenr)
|
|
return BTRFS_TREE_RELOC_OBJECTID;
|
|
return resolve_one_root(ref->parent);
|
|
}
|
|
|
|
static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
|
|
{
|
|
return u64_to_ptr(unode->aux);
|
|
}
|
|
static inline u64 unode_bytenr(struct ulist_node *unode)
|
|
{
|
|
return unode->val;
|
|
}
|
|
|
|
static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
|
|
{
|
|
struct tree_block *block = calloc(1, sizeof(*block));
|
|
|
|
if (block) {
|
|
block->num_bytes = num_bytes;
|
|
block->level = level;
|
|
if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
|
|
return 0;
|
|
free(block);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void free_tree_blocks(void)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
if (!tree_blocks)
|
|
return;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter)))
|
|
free(unode_tree_block(unode));
|
|
ulist_free(tree_blocks);
|
|
tree_blocks = NULL;
|
|
}
|
|
|
|
#ifdef QGROUP_VERIFY_DEBUG
|
|
static void print_tree_block(u64 bytenr, struct tree_block *block)
|
|
{
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
|
|
printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
|
|
block->level);
|
|
|
|
ref = find_ref_bytenr(bytenr);
|
|
node = &ref->bytenr_node;
|
|
do {
|
|
print_ref(ref);
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == bytenr);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static void print_all_tree_blocks(void)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
if (!tree_blocks)
|
|
return;
|
|
|
|
printf("Listing all found interior tree nodes:\n");
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter)))
|
|
print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
|
|
}
|
|
#endif
|
|
|
|
static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
|
|
{
|
|
int nr, i;
|
|
int extent_type;
|
|
u64 bytenr, num_bytes;
|
|
struct btrfs_key key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
|
|
nr = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nr; i++) {
|
|
btrfs_item_key(eb, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
|
|
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
|
|
/* filter out: inline, disk_bytenr == 0, compressed?
|
|
* not if we can avoid it */
|
|
extent_type = btrfs_file_extent_type(eb, fi);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (!bytenr)
|
|
continue;
|
|
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
|
|
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 ref_parent)
|
|
{
|
|
int ret, nr, i;
|
|
struct extent_buffer *eb;
|
|
u64 new_bytenr;
|
|
u64 new_num_bytes;
|
|
|
|
// printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
|
|
// bytenr, num_bytes, ref_parent);
|
|
|
|
eb = read_tree_block(info, bytenr, 0);
|
|
if (!extent_buffer_uptodate(eb))
|
|
return -EIO;
|
|
|
|
ret = 0;
|
|
/* Don't add a ref for our starting tree block to itself */
|
|
if (bytenr != ref_parent) {
|
|
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (btrfs_is_leaf(eb)) {
|
|
ret = add_refs_for_leaf_items(eb, ref_parent);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Interior nodes are tuples of (key, bytenr) where key is the
|
|
* leftmost key in the tree block pointed to by bytenr. We
|
|
* don't have to care about key here, just follow the bytenr
|
|
* pointer.
|
|
*/
|
|
nr = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nr; i++) {
|
|
new_bytenr = btrfs_node_blockptr(eb, i);
|
|
new_num_bytes = info->nodesize;
|
|
|
|
ret = travel_tree(info, root, new_bytenr, new_num_bytes,
|
|
ref_parent);
|
|
}
|
|
|
|
out:
|
|
free_extent_buffer(eb);
|
|
return ret;
|
|
}
|
|
|
|
static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
|
|
struct tree_block *block)
|
|
{
|
|
int ret;
|
|
u64 root_id = resolve_one_root(bytenr);
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
|
|
/* Tree reloc tree doesn't contribute qgroup, skip it */
|
|
if (root_id == BTRFS_TREE_RELOC_OBJECTID)
|
|
return 0;
|
|
key.objectid = root_id;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
/*
|
|
* XXX: Don't free the root object as we don't know whether it
|
|
* came off our fs_info struct or not.
|
|
*/
|
|
root = btrfs_read_fs_root(info, &key);
|
|
if (!root || IS_ERR(root))
|
|
return ENOENT;
|
|
|
|
ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Place shared refs in the ref tree for each child of an interior tree node.
|
|
*/
|
|
static int map_implied_refs(struct btrfs_fs_info *info)
|
|
{
|
|
int ret = 0;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter))) {
|
|
ret = add_refs_for_implied(info, unode_bytenr(unode),
|
|
unode_tree_block(unode));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* insert a new root into the tree. returns the existing root entry
|
|
* if one is already there. qgroupid is used
|
|
* as the key
|
|
*/
|
|
static int insert_count(struct qgroup_count *qc)
|
|
{
|
|
struct rb_node **p = &counts.root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct qgroup_count *curr;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
curr = rb_entry(parent, struct qgroup_count, rb_node);
|
|
|
|
if (qc->qgroupid < curr->qgroupid)
|
|
p = &(*p)->rb_left;
|
|
else if (qc->qgroupid > curr->qgroupid)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return EEXIST;
|
|
}
|
|
counts.num_groups++;
|
|
rb_link_node(&qc->rb_node, parent, p);
|
|
rb_insert_color(&qc->rb_node, &counts.root);
|
|
return 0;
|
|
}
|
|
|
|
static struct qgroup_count *find_count(u64 qgroupid)
|
|
{
|
|
struct rb_node *n = counts.root.rb_node;
|
|
struct qgroup_count *count;
|
|
|
|
while (n) {
|
|
count = rb_entry(n, struct qgroup_count, rb_node);
|
|
|
|
if (qgroupid < count->qgroupid)
|
|
n = n->rb_left;
|
|
else if (qgroupid > count->qgroupid)
|
|
n = n->rb_right;
|
|
else
|
|
return count;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_qgroup_info_item *disk)
|
|
{
|
|
struct qgroup_count *c = calloc(1, sizeof(*c));
|
|
struct qgroup_info *item;
|
|
|
|
if (c) {
|
|
c->qgroupid = btrfs_disk_key_offset(key);
|
|
c->key = *key;
|
|
|
|
item = &c->diskinfo;
|
|
item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
|
|
item->referenced_compressed =
|
|
btrfs_qgroup_info_referenced_compressed(leaf, disk);
|
|
item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
|
|
item->exclusive_compressed =
|
|
btrfs_qgroup_info_exclusive_compressed(leaf, disk);
|
|
INIT_LIST_HEAD(&c->groups);
|
|
INIT_LIST_HEAD(&c->members);
|
|
INIT_LIST_HEAD(&c->bad_list);
|
|
|
|
if (insert_count(c)) {
|
|
free(c);
|
|
c = NULL;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static int add_qgroup_relation(u64 memberid, u64 parentid)
|
|
{
|
|
struct qgroup_count *member;
|
|
struct qgroup_count *parent;
|
|
struct btrfs_qgroup_list *list;
|
|
|
|
if (memberid > parentid)
|
|
return 0;
|
|
|
|
member = find_count(memberid);
|
|
parent = find_count(parentid);
|
|
if (!member || !parent)
|
|
return -ENOENT;
|
|
|
|
list = calloc(1, sizeof(*list));
|
|
if (!list)
|
|
return -ENOMEM;
|
|
|
|
list->group = parent;
|
|
list->member = member;
|
|
list_add_tail(&list->next_group, &member->groups);
|
|
list_add_tail(&list->next_member, &parent->members);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void read_qgroup_status(struct extent_buffer *eb, int slot,
|
|
struct counts_tree *counts)
|
|
{
|
|
struct btrfs_qgroup_status_item *status_item;
|
|
u64 flags;
|
|
|
|
status_item = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item);
|
|
flags = btrfs_qgroup_status_flags(eb, status_item);
|
|
/*
|
|
* Since qgroup_inconsist/rescan_running is just one bit,
|
|
* assign value directly won't work.
|
|
*/
|
|
counts->qgroup_inconsist = !!(flags &
|
|
BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
|
|
counts->rescan_running = !!(flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN);
|
|
}
|
|
|
|
static int load_quota_info(struct btrfs_fs_info *info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *root = info->quota_root;
|
|
struct btrfs_root *tmproot;
|
|
struct btrfs_path path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key root_key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_qgroup_info_item *item;
|
|
struct qgroup_count *count;
|
|
int i, nr;
|
|
int search_relations = 0;
|
|
|
|
loop:
|
|
/*
|
|
* Do 2 passes, the first allocates group counts and reads status
|
|
* items. The 2nd pass picks up relation items and glues them to their
|
|
* respective count structures.
|
|
*/
|
|
btrfs_init_path(&path);
|
|
|
|
key.offset = 0;
|
|
key.objectid = search_relations ? 0 : BTRFS_QGROUP_RELATION_KEY;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
|
|
nr = btrfs_header_nritems(leaf);
|
|
for(i = 0; i < nr; i++) {
|
|
btrfs_item_key(leaf, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (search_relations) {
|
|
if (key.type == BTRFS_QGROUP_RELATION_KEY) {
|
|
ret = add_qgroup_relation(key.objectid,
|
|
key.offset);
|
|
if (ret) {
|
|
error("out of memory");
|
|
goto out;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (key.type == BTRFS_QGROUP_STATUS_KEY) {
|
|
read_qgroup_status(leaf, i, &counts);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* At this point, we can ignore anything that
|
|
* isn't a qgroup info.
|
|
*/
|
|
if (key.type != BTRFS_QGROUP_INFO_KEY)
|
|
continue;
|
|
|
|
item = btrfs_item_ptr(leaf, i,
|
|
struct btrfs_qgroup_info_item);
|
|
|
|
count = alloc_count(&disk_key, leaf, item);
|
|
if (!count) {
|
|
ret = ENOMEM;
|
|
fprintf(stderr, "ERROR: out of memory\n");
|
|
goto out;
|
|
}
|
|
|
|
root_key.objectid = key.offset;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
|
|
if (tmproot && !IS_ERR(tmproot)) {
|
|
count->subvol_exists = 1;
|
|
btrfs_free_fs_root(tmproot);
|
|
}
|
|
}
|
|
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
btrfs_release_path(&path);
|
|
|
|
if (!search_relations) {
|
|
search_relations = 1;
|
|
goto loop;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int add_inline_refs(struct btrfs_fs_info *info,
|
|
struct extent_buffer *ei_leaf, int slot,
|
|
u64 bytenr, u64 num_bytes, int meta_item)
|
|
{
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_data_ref *dref;
|
|
u64 flags, root_obj, offset, parent;
|
|
u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
|
|
int type;
|
|
unsigned long end;
|
|
unsigned long ptr;
|
|
|
|
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(ei_leaf, ei);
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
|
|
struct btrfs_tree_block_info *tbinfo;
|
|
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
|
|
iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
|
|
} else {
|
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
}
|
|
|
|
ptr = (unsigned long)iref;
|
|
end = (unsigned long)ei + item_size;
|
|
while (ptr < end) {
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
|
|
parent = root_obj = 0;
|
|
offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
|
|
type = btrfs_extent_inline_ref_type(ei_leaf, iref);
|
|
switch (type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
root_obj = offset;
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
parent = offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_keyed_ref(struct btrfs_fs_info *info,
|
|
struct btrfs_key *key,
|
|
struct extent_buffer *leaf, int slot,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
u64 root_obj = 0, parent = 0;
|
|
struct btrfs_extent_data_ref *dref;
|
|
|
|
switch(key->type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
root_obj = key->offset;
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
|
|
root_obj = btrfs_extent_data_ref_root(leaf, dref);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
parent = key->offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* return value of 0 indicates leaf or not meta data. The code that
|
|
* calls this does not need to make a distinction between the two as
|
|
* it is only concerned with intermediate blocks which will always
|
|
* have level > 0.
|
|
*/
|
|
static int get_tree_block_level(struct btrfs_key *key,
|
|
struct extent_buffer *ei_leaf,
|
|
int slot)
|
|
{
|
|
int level = 0;
|
|
int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
|
|
u64 flags;
|
|
struct btrfs_extent_item *ei;
|
|
|
|
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(ei_leaf, ei);
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
|
|
struct btrfs_tree_block_info *tbinfo;
|
|
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
|
|
level = btrfs_tree_block_level(ei_leaf, tbinfo);
|
|
} else if (meta_key) {
|
|
/* skinny metadata */
|
|
level = (int)key->offset;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Walk the extent tree, allocating a ref item for every ref and
|
|
* storing it in the bytenr tree.
|
|
*/
|
|
static int scan_extents(struct btrfs_fs_info *info,
|
|
u64 start, u64 end)
|
|
{
|
|
int ret, i, nr, level;
|
|
struct btrfs_root *root = info->extent_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path path;
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *leaf;
|
|
u64 bytenr = 0, num_bytes = 0;
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
key.objectid = start;
|
|
key.type = 0;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
|
|
goto out;
|
|
}
|
|
path.reada = 1;
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
|
|
nr = btrfs_header_nritems(leaf);
|
|
for(i = 0; i < nr; i++) {
|
|
btrfs_item_key(leaf, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (key.objectid < start)
|
|
continue;
|
|
|
|
if (key.objectid > end)
|
|
goto done;
|
|
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
int meta = 0;
|
|
|
|
tot_extents_scanned++;
|
|
|
|
bytenr = key.objectid;
|
|
num_bytes = key.offset;
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
num_bytes = info->nodesize;
|
|
meta = 1;
|
|
}
|
|
|
|
ret = add_inline_refs(info, leaf, i, bytenr,
|
|
num_bytes, meta);
|
|
if (ret)
|
|
goto out;
|
|
|
|
level = get_tree_block_level(&key, leaf, i);
|
|
if (level) {
|
|
if (alloc_tree_block(bytenr, num_bytes,
|
|
level))
|
|
return ENOMEM;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
|
|
continue;
|
|
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
|
|
continue;
|
|
|
|
/*
|
|
* Keyed refs should come after their extent
|
|
* item in the tree. As a result, the value of
|
|
* bytenr and num_bytes should be unchanged
|
|
* from the above block that catches the
|
|
* original extent item.
|
|
*/
|
|
BUG_ON(key.objectid != bytenr);
|
|
|
|
ret = add_keyed_ref(info, &key, leaf, i, bytenr,
|
|
num_bytes);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret != 0) {
|
|
if (ret < 0) {
|
|
fprintf(stderr,
|
|
"ERROR: Next leaf failed: %d\n", ret);
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
done:
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(&path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
|
|
char *type)
|
|
{
|
|
printf("%s\t\t%s %llu %s compressed %llu\n",
|
|
prefix, type, (unsigned long long)bytes, type,
|
|
(unsigned long long)bytes_compressed);
|
|
}
|
|
|
|
static void print_fields_signed(long long bytes,
|
|
long long bytes_compressed,
|
|
char *prefix, char *type)
|
|
{
|
|
printf("%s\t\t%s %lld %s compressed %lld\n",
|
|
prefix, type, bytes, type, bytes_compressed);
|
|
}
|
|
|
|
static inline int qgroup_printable(struct qgroup_count *c)
|
|
{
|
|
return !!(c->subvol_exists || btrfs_qgroup_level(c->qgroupid));
|
|
}
|
|
|
|
static int report_qgroup_difference(struct qgroup_count *count, int verbose)
|
|
{
|
|
int is_different;
|
|
struct qgroup_info *info = &count->info;
|
|
struct qgroup_info *disk = &count->diskinfo;
|
|
long long excl_diff = info->exclusive - disk->exclusive;
|
|
long long ref_diff = info->referenced - disk->referenced;
|
|
|
|
is_different = excl_diff || ref_diff;
|
|
|
|
if (verbose || (is_different && qgroup_printable(count))) {
|
|
printf("Counts for qgroup id: %llu/%llu %s\n",
|
|
btrfs_qgroup_level(count->qgroupid),
|
|
btrfs_qgroup_subvid(count->qgroupid),
|
|
is_different ? "are different" : "");
|
|
|
|
print_fields(info->referenced, info->referenced_compressed,
|
|
"our:", "referenced");
|
|
print_fields(disk->referenced, disk->referenced_compressed,
|
|
"disk:", "referenced");
|
|
if (ref_diff)
|
|
print_fields_signed(ref_diff, ref_diff,
|
|
"diff:", "referenced");
|
|
print_fields(info->exclusive, info->exclusive_compressed,
|
|
"our:", "exclusive");
|
|
print_fields(disk->exclusive, disk->exclusive_compressed,
|
|
"disk:", "exclusive");
|
|
if (excl_diff)
|
|
print_fields_signed(excl_diff, excl_diff,
|
|
"diff:", "exclusive");
|
|
}
|
|
|
|
return is_different;
|
|
}
|
|
|
|
/*
|
|
* Report qgroups errors
|
|
* Return 0 if nothing wrong.
|
|
* Return <0 if any qgroup is inconsistent.
|
|
*
|
|
* @all: if set, all qgroup will be checked and reported even already
|
|
* inconsistent or under rescan.
|
|
*/
|
|
int report_qgroups(int all)
|
|
{
|
|
struct rb_node *node;
|
|
struct qgroup_count *c;
|
|
bool found_err = false;
|
|
|
|
if (!repair && counts.rescan_running) {
|
|
if (all) {
|
|
printf(
|
|
"Qgroup rescan is running, a difference in qgroup counts is expected\n");
|
|
} else {
|
|
printf(
|
|
"Qgroup rescan is running, qgroups will not be printed.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
if (counts.qgroup_inconsist && !counts.rescan_running)
|
|
fprintf(stderr, "Qgroup are marked as inconsistent.\n");
|
|
node = rb_first(&counts.root);
|
|
while (node) {
|
|
c = rb_entry(node, struct qgroup_count, rb_node);
|
|
|
|
if (report_qgroup_difference(c, all)) {
|
|
list_add_tail(&c->bad_list, &bad_qgroups);
|
|
found_err = true;
|
|
}
|
|
|
|
node = rb_next(node);
|
|
}
|
|
if (found_err)
|
|
return -EUCLEAN;
|
|
return 0;
|
|
}
|
|
|
|
void free_qgroup_counts(void)
|
|
{
|
|
struct rb_node *node;
|
|
struct qgroup_count *c;
|
|
struct btrfs_qgroup_list *glist, *tmpglist;
|
|
|
|
node = rb_first(&counts.root);
|
|
while (node) {
|
|
c = rb_entry(node, struct qgroup_count, rb_node);
|
|
|
|
list_del(&c->bad_list);
|
|
|
|
list_for_each_entry_safe(glist, tmpglist, &c->groups,
|
|
next_group) {
|
|
list_del(&glist->next_group);
|
|
list_del(&glist->next_member);
|
|
free(glist);
|
|
}
|
|
list_for_each_entry_safe(glist, tmpglist, &c->members,
|
|
next_group) {
|
|
list_del(&glist->next_group);
|
|
list_del(&glist->next_member);
|
|
free(glist);
|
|
}
|
|
|
|
node = rb_next(node);
|
|
|
|
rb_erase(&c->rb_node, &counts.root);
|
|
free(c);
|
|
}
|
|
}
|
|
|
|
int qgroup_verify_all(struct btrfs_fs_info *info)
|
|
{
|
|
int ret;
|
|
|
|
if (!info->quota_enabled)
|
|
return 0;
|
|
|
|
tree_blocks = ulist_alloc(0);
|
|
if (!tree_blocks) {
|
|
fprintf(stderr,
|
|
"ERROR: Out of memory while allocating ulist.\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
ret = load_quota_info(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Put all extent refs into our rbtree
|
|
*/
|
|
ret = scan_extents(info, 0, ~0ULL);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = map_implied_refs(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = account_all_refs(1, 0);
|
|
|
|
out:
|
|
/*
|
|
* Don't free the qgroup count records as they will be walked
|
|
* later via the print function.
|
|
*/
|
|
free_tree_blocks();
|
|
free_ref_tree(&by_bytenr);
|
|
return ret;
|
|
}
|
|
|
|
static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
|
|
{
|
|
int n = roots->nnodes;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
printf("%llu ", unode->val);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
|
|
struct ulist *roots)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
BUG_ON(unode->val == 0ULL);
|
|
if (unode->val == subvolid) {
|
|
__print_subvol_info(bytenr, num_bytes, roots);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
|
|
{
|
|
int ret;
|
|
|
|
tree_blocks = ulist_alloc(0);
|
|
if (!tree_blocks) {
|
|
fprintf(stderr,
|
|
"ERROR: Out of memory while allocating ulist.\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Put all extent refs into our rbtree
|
|
*/
|
|
ret = scan_extents(info, 0, ~0ULL);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = map_implied_refs(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
printf("Offset\t\tLen\tRoot Refs\tRoots\n");
|
|
ret = account_all_refs(0, subvol);
|
|
|
|
out:
|
|
free_tree_blocks();
|
|
free_ref_tree(&by_bytenr);
|
|
return ret;
|
|
}
|
|
|
|
static int repair_qgroup_info(struct btrfs_fs_info *info,
|
|
struct qgroup_count *count)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *root = info->quota_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path path;
|
|
struct btrfs_qgroup_info_item *info_item;
|
|
struct btrfs_key key;
|
|
|
|
printf("Repair qgroup %llu/%llu\n", btrfs_qgroup_level(count->qgroupid),
|
|
btrfs_qgroup_subvid(count->qgroupid));
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
btrfs_init_path(&path);
|
|
key.objectid = 0;
|
|
key.type = BTRFS_QGROUP_INFO_KEY;
|
|
key.offset = count->qgroupid;
|
|
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
|
|
if (ret) {
|
|
error("could not find disk item for qgroup %llu/%llu",
|
|
btrfs_qgroup_level(count->qgroupid),
|
|
btrfs_qgroup_subvid(count->qgroupid));
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
info_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_qgroup_info_item);
|
|
|
|
btrfs_set_qgroup_info_generation(path.nodes[0], info_item,
|
|
trans->transid);
|
|
|
|
btrfs_set_qgroup_info_referenced(path.nodes[0], info_item,
|
|
count->info.referenced);
|
|
btrfs_set_qgroup_info_referenced_compressed(path.nodes[0], info_item,
|
|
count->info.referenced_compressed);
|
|
|
|
btrfs_set_qgroup_info_exclusive(path.nodes[0], info_item,
|
|
count->info.exclusive);
|
|
btrfs_set_qgroup_info_exclusive_compressed(path.nodes[0], info_item,
|
|
count->info.exclusive_compressed);
|
|
|
|
btrfs_mark_buffer_dirty(path.nodes[0]);
|
|
|
|
out:
|
|
btrfs_commit_transaction(trans, root);
|
|
btrfs_release_path(&path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int repair_qgroup_status(struct btrfs_fs_info *info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *root = info->quota_root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path path;
|
|
struct btrfs_key key;
|
|
struct btrfs_qgroup_status_item *status_item;
|
|
|
|
printf("Repair qgroup status item\n");
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
btrfs_init_path(&path);
|
|
key.objectid = 0;
|
|
key.type = BTRFS_QGROUP_STATUS_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
|
|
if (ret) {
|
|
error("could not find qgroup status item");
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
status_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_qgroup_status_item);
|
|
btrfs_set_qgroup_status_flags(path.nodes[0], status_item,
|
|
BTRFS_QGROUP_STATUS_FLAG_ON);
|
|
btrfs_set_qgroup_status_rescan(path.nodes[0], status_item, 0);
|
|
btrfs_set_qgroup_status_generation(path.nodes[0], status_item,
|
|
trans->transid);
|
|
|
|
btrfs_mark_buffer_dirty(path.nodes[0]);
|
|
|
|
out:
|
|
btrfs_commit_transaction(trans, root);
|
|
btrfs_release_path(&path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int repair_qgroups(struct btrfs_fs_info *info, int *repaired)
|
|
{
|
|
int ret = 0;
|
|
struct qgroup_count *count, *tmpcount;
|
|
|
|
*repaired = 0;
|
|
|
|
if (!repair)
|
|
return 0;
|
|
|
|
list_for_each_entry_safe(count, tmpcount, &bad_qgroups, bad_list) {
|
|
ret = repair_qgroup_info(info, count);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
|
|
(*repaired)++;
|
|
|
|
list_del_init(&count->bad_list);
|
|
}
|
|
|
|
/*
|
|
* Do this step last as we want the latest transaction id on
|
|
* our qgroup status to avoid a (useless) warning after
|
|
* mount.
|
|
*/
|
|
if (*repaired || counts.qgroup_inconsist || counts.rescan_running) {
|
|
ret = repair_qgroup_status(info);
|
|
if (ret)
|
|
goto out;
|
|
|
|
(*repaired)++;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|