btrfs-progs/check/clear-cache.c
Josef Bacik 888a2b6a0c btrfs-progs: remove root argument from free_extent and inc_extent_ref
Neither of these actually need the root argument, we provide all the
information for the ref through the arguments we pass through.  Remove
the root argument from both of them.  These needed to be done in the
same patch because of the __btrfs_mod_ref helper which will pick one or
the other function for processing reference updates.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-26 18:02:30 +02:00

618 lines
15 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/free-space-cache.h"
#include "kernel-shared/free-space-tree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/file-item.h"
#include "common/internal.h"
#include "common/messages.h"
#include "check/common.h"
#include "check/repair.h"
#include "check/mode-common.h"
#include "check/clear-cache.h"
/*
* Number of free space cache inodes to delete in one transaction.
*
* This is to speedup the v1 space cache deletion for large fs.
*/
#define NR_BLOCK_GROUP_CLUSTER (16)
int btrfs_clear_v1_cache(struct btrfs_fs_info *fs_info)
{
struct btrfs_trans_handle *trans;
struct btrfs_block_group *bg_cache;
int nr_handled = 0;
u64 current = 0;
int ret = 0;
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
/* Clear all free space cache inodes and its extent data */
while (1) {
bg_cache = btrfs_lookup_first_block_group(fs_info, current);
if (!bg_cache)
break;
ret = btrfs_clear_free_space_cache(trans, bg_cache);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
return ret;
}
nr_handled++;
if (nr_handled == NR_BLOCK_GROUP_CLUSTER) {
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
}
current = bg_cache->start + bg_cache->length;
}
btrfs_set_super_cache_generation(fs_info->super_copy, (u64)-1);
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
}
return ret;
}
int do_clear_free_space_cache(struct btrfs_fs_info *fs_info, int clear_version)
{
int ret = 0;
if (clear_version == 1) {
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
warning(
"free space cache v2 detected, use --clear-space-cache v2, proceeding with clearing v1");
ret = btrfs_clear_v1_cache(fs_info);
if (ret) {
error("failed to clear free space cache");
ret = 1;
} else {
printf("Free space cache cleared\n");
}
} else if (clear_version == 2) {
if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
printf("no free space cache v2 to clear\n");
ret = 0;
goto close_out;
}
printf("Clear free space cache v2\n");
ret = btrfs_clear_free_space_tree(fs_info);
if (ret) {
error("failed to clear free space cache v2: %d", ret);
ret = 1;
} else {
printf("free space cache v2 cleared\n");
}
}
close_out:
return ret;
}
static int check_free_space_tree(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key key = { 0 };
struct btrfs_path path;
int ret = 0;
btrfs_init_path(&path);
while (1) {
struct btrfs_block_group *bg;
u64 cur_start = key.objectid;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
goto out;
/*
* We should be landing on an item, so if we're above the
* nritems we know we hit the end of the tree.
*/
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
break;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
if (key.type != BTRFS_FREE_SPACE_INFO_KEY) {
fprintf(stderr,
"Failed to find a space info key at %llu [%llu %u %llu]\n",
cur_start, key.objectid, key.type, key.offset);
ret = -EINVAL;
goto out;
}
bg = btrfs_lookup_first_block_group(fs_info, key.objectid);
if (!bg) {
fprintf(stderr,
"We have a space info key for a block group that doesn't exist\n");
ret = -EINVAL;
goto out;
}
btrfs_release_path(&path);
key.objectid += key.offset;
key.offset = 0;
}
ret = 0;
out:
btrfs_release_path(&path);
return ret;
}
static int check_free_space_trees(struct btrfs_root *root)
{
struct btrfs_root *free_space_root;
struct rb_node *n;
struct btrfs_key key = {
.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
int ret = 0;
free_space_root = btrfs_global_root(root->fs_info, &key);
while (1) {
ret = check_free_space_tree(free_space_root);
if (ret)
break;
n = rb_next(&root->rb_node);
if (!n)
break;
free_space_root = rb_entry(n, struct btrfs_root, rb_node);
if (root->root_key.objectid != BTRFS_FREE_SPACE_TREE_OBJECTID)
break;
}
return ret;
}
static int check_cache_range(struct btrfs_root *root,
struct btrfs_block_group *cache,
u64 offset, u64 bytes)
{
struct btrfs_free_space *entry;
u64 *logical;
u64 bytenr;
int stripe_len;
int i, nr, ret;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(root->fs_info,
cache->start, bytenr,
&logical, &nr, &stripe_len);
if (ret)
return ret;
while (nr--) {
if (logical[nr] + stripe_len <= offset)
continue;
if (offset + bytes <= logical[nr])
continue;
if (logical[nr] == offset) {
if (stripe_len >= bytes) {
free(logical);
return 0;
}
bytes -= stripe_len;
offset += stripe_len;
} else if (logical[nr] < offset) {
if (logical[nr] + stripe_len >=
offset + bytes) {
free(logical);
return 0;
}
bytes = (offset + bytes) -
(logical[nr] + stripe_len);
offset = logical[nr] + stripe_len;
} else {
/*
* Could be tricky, the super may land in the
* middle of the area we're checking. First
* check the easiest case, it's at the end.
*/
if (logical[nr] + stripe_len >=
bytes + offset) {
bytes = logical[nr] - offset;
continue;
}
/* Check the left side */
ret = check_cache_range(root, cache,
offset,
logical[nr] - offset);
if (ret) {
free(logical);
return ret;
}
/* Now we continue with the right side */
bytes = (offset + bytes) -
(logical[nr] + stripe_len);
offset = logical[nr] + stripe_len;
}
}
free(logical);
}
entry = btrfs_find_free_space(cache->free_space_ctl, offset, bytes);
if (!entry) {
fprintf(stderr, "there is no free space entry for %llu-%llu\n",
offset, offset+bytes);
return -EINVAL;
}
if (entry->offset != offset) {
fprintf(stderr, "wanted offset %llu, found %llu\n", offset,
entry->offset);
return -EINVAL;
}
if (entry->bytes != bytes) {
fprintf(stderr, "wanted bytes %llu, found %llu for off %llu\n",
bytes, entry->bytes, offset);
return -EINVAL;
}
unlink_free_space(cache->free_space_ctl, entry);
free(entry);
return 0;
}
static int verify_space_cache(struct btrfs_root *root,
struct btrfs_block_group *cache,
struct extent_io_tree *used)
{
u64 start, end, last_end, bg_end;
int ret = 0;
start = cache->start;
bg_end = cache->start + cache->length;
last_end = start;
while (start < bg_end) {
ret = find_first_extent_bit(used, cache->start, &start, &end,
EXTENT_DIRTY, NULL);
if (ret || start >= bg_end) {
ret = 0;
break;
}
if (last_end < start) {
ret = check_cache_range(root, cache, last_end,
start - last_end);
if (ret)
return ret;
}
end = min(end, bg_end - 1);
clear_extent_dirty(used, start, end, NULL);
start = end + 1;
last_end = start;
}
if (last_end < bg_end)
ret = check_cache_range(root, cache, last_end,
bg_end - last_end);
if (!ret &&
!RB_EMPTY_ROOT(&cache->free_space_ctl->free_space_offset)) {
fprintf(stderr, "There are still entries left in the space "
"cache\n");
ret = -EINVAL;
}
return ret;
}
static int check_space_cache(struct btrfs_root *root, struct task_ctx *task_ctx)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct extent_io_tree used;
struct btrfs_block_group *cache;
u64 start = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
int ret;
int error = 0;
extent_io_tree_init(fs_info, &used, 0);
ret = btrfs_mark_used_blocks(fs_info, &used);
if (ret)
return ret;
while (1) {
task_ctx->item_count++;
cache = btrfs_lookup_first_block_group(fs_info, start);
if (!cache)
break;
start = cache->start + cache->length;
if (!cache->free_space_ctl) {
if (btrfs_init_free_space_ctl(cache,
fs_info->sectorsize)) {
ret = -ENOMEM;
break;
}
} else {
btrfs_remove_free_space_cache(cache);
}
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
ret = exclude_super_stripes(fs_info, cache);
if (ret) {
errno = -ret;
fprintf(stderr,
"could not exclude super stripes: %m\n");
error++;
continue;
}
ret = load_free_space_tree(fs_info, cache);
free_excluded_extents(fs_info, cache);
if (ret < 0) {
errno = -ret;
fprintf(stderr,
"could not load free space tree: %m\n");
error++;
continue;
}
error += ret;
} else {
ret = load_free_space_cache(fs_info, cache);
if (ret < 0)
error++;
if (ret <= 0)
continue;
}
ret = verify_space_cache(root, cache, &used);
if (ret) {
fprintf(stderr, "cache appears valid but isn't %llu\n",
cache->start);
error++;
}
}
extent_io_tree_release(&used);
return error ? -EINVAL : 0;
}
int validate_free_space_cache(struct btrfs_root *root, struct task_ctx *task_ctx)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
/*
* If cache generation is between 0 and -1ULL, sb generation must be
* equal to sb cache generation or the v1 space caches are outdated.
*/
if (btrfs_super_cache_generation(fs_info->super_copy) != -1ULL &&
btrfs_super_cache_generation(fs_info->super_copy) != 0 &&
btrfs_super_generation(fs_info->super_copy) !=
btrfs_super_cache_generation(fs_info->super_copy)) {
printf(
"cache and super generation don't match, space cache will be invalidated\n");
return 0;
}
ret = check_space_cache(root, task_ctx);
if (!ret && btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
ret = check_free_space_trees(root);
if (ret && btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
opt_check_repair) {
ret = do_clear_free_space_cache(fs_info, 2);
if (ret)
goto out;
ret = btrfs_create_free_space_tree(fs_info);
if (ret)
error("couldn't repair freespace tree");
}
out:
return ret ? -EINVAL : 0;
}
int truncate_free_ino_items(struct btrfs_root *root)
{
struct btrfs_path path;
struct btrfs_key key = { .objectid = BTRFS_FREE_INO_OBJECTID,
.type = (u8)-1,
.offset = (u64)-1 };
struct btrfs_trans_handle *trans;
int ret;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
error_msg(ERROR_MSG_START_TRANS, "inode-cache removal");
return PTR_ERR(trans);
}
while (1) {
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_root *csum_root;
struct btrfs_key found_key;
u8 found_type;
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
} else if (ret > 0) {
ret = 0;
/* No more items, finished truncating */
if (path.slots[0] == 0) {
btrfs_release_path(&path);
goto out;
}
path.slots[0]--;
}
fi = NULL;
leaf = path.nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path.slots[0]);
found_type = found_key.type;
/* Ino cache also has free space bitmaps in the fs stree */
if (found_key.objectid != BTRFS_FREE_INO_OBJECTID &&
found_key.objectid != BTRFS_FREE_SPACE_OBJECTID) {
btrfs_release_path(&path);
/* Now delete the FREE_SPACE_OBJECTID */
if (key.objectid == BTRFS_FREE_INO_OBJECTID) {
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
continue;
}
break;
}
if (found_type == BTRFS_EXTENT_DATA_KEY) {
int extent_type;
u64 extent_disk_bytenr;
u64 extent_num_bytes;
u64 extent_offset;
fi = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
UASSERT(extent_type == BTRFS_FILE_EXTENT_REG);
extent_disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
extent_num_bytes = btrfs_file_extent_disk_num_bytes (leaf, fi);
extent_offset = found_key.offset -
btrfs_file_extent_offset(leaf, fi);
UASSERT(extent_offset == 0);
ret = btrfs_free_extent(trans, extent_disk_bytenr,
extent_num_bytes, 0,
root->objectid,
BTRFS_FREE_INO_OBJECTID, 0);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
btrfs_release_path(&path);
goto out;
}
csum_root = btrfs_csum_root(trans->fs_info,
extent_disk_bytenr);
ret = btrfs_del_csums(trans, csum_root,
extent_disk_bytenr,
extent_num_bytes);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
btrfs_release_path(&path);
goto out;
}
}
ret = btrfs_del_item(trans, root, &path);
BUG_ON(ret);
btrfs_release_path(&path);
}
btrfs_commit_transaction(trans, root);
out:
return ret;
}
int clear_ino_cache_items(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_path path;
struct btrfs_key key;
key.objectid = BTRFS_FS_TREE_OBJECTID;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, &path, 0, 0);
if (ret < 0)
return ret;
while(1) {
struct btrfs_key found_key;
btrfs_item_key_to_cpu(path.nodes[0], &found_key, path.slots[0]);
if (found_key.type == BTRFS_ROOT_ITEM_KEY &&
is_fstree(found_key.objectid)) {
struct btrfs_root *root;
found_key.offset = (u64)-1;
root = btrfs_read_fs_root(fs_info, &found_key);
if (IS_ERR(root))
goto next;
ret = truncate_free_ino_items(root);
if (ret)
goto out;
printf("Successfully cleaned up ino cache for root id: %lld\n",
root->objectid);
} else {
/* If we get a negative tree this means it's the last one */
if ((s64)found_key.objectid < 0 &&
found_key.type == BTRFS_ROOT_ITEM_KEY)
goto out;
}
/*
* Only fs roots contain an ino cache information - either
* FS_TREE_OBJECTID or subvol id >= BTRFS_FIRST_FREE_OBJECTID
*/
next:
if (key.objectid == BTRFS_FS_TREE_OBJECTID) {
key.objectid = BTRFS_FIRST_FREE_OBJECTID;
btrfs_release_path(&path);
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
&path, 0, 0);
if (ret < 0)
return ret;
} else {
ret = btrfs_next_item(fs_info->tree_root, &path);
if (ret < 0) {
goto out;
} else if (ret > 0) {
ret = 0;
goto out;
}
}
}
out:
btrfs_release_path(&path);
return ret;
}