btrfs-progs/crypto/blake2b-ref.c
David Sterba 4fc291a465 btrfs-progs: fix detection of accelerated implementation.
The build fails with crypto backends other than builtin, the
initializers cannot be reached as they're ifdef-ed out.  Move
hash_init_accel under the right condition and delete the
algorithm-specific initializers as they're used only by the hash test
and that can simply call hash_init_accel to set the implementation.

All the -m flags need to be detected at configure time and the flag used
for ifdef (HAVE_CFLAG_m*), not the actual feature defined by compiler as
the dispatcher function is not built with the -m flags.

The uname check for x86_64 must be dropped so on i386/i586 we can still
build accelerated version.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-01 15:10:21 +01:00

407 lines
11 KiB
C

/*
BLAKE2 reference source code package - reference C implementations
Copyright 2012, Samuel Neves <sneves@dei.uc.pt>. You may use this under the
terms of the CC0, the OpenSSL Licence, or the Apache Public License 2.0, at
your option. The terms of these licenses can be found at:
- CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
- OpenSSL license : https://www.openssl.org/source/license.html
- Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
More information about the BLAKE2 hash function can be found at
https://blake2.net.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "blake2.h"
#include "blake2-impl.h"
#include "common/cpu-utils.h"
static const uint64_t blake2b_IV[8] =
{
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
static const uint8_t blake2b_sigma[12][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
static void blake2b_set_lastnode( blake2b_state *S )
{
S->f[1] = (uint64_t)-1;
}
/* Some helper functions, not necessarily useful */
static int blake2b_is_lastblock( const blake2b_state *S )
{
return S->f[0] != 0;
}
static void blake2b_set_lastblock( blake2b_state *S )
{
if( S->last_node ) blake2b_set_lastnode( S );
S->f[0] = (uint64_t)-1;
}
static void blake2b_increment_counter( blake2b_state *S, const uint64_t inc )
{
S->t[0] += inc;
S->t[1] += ( S->t[0] < inc );
}
static void blake2b_init0( blake2b_state *S )
{
size_t i;
memset( S, 0, sizeof( blake2b_state ) );
for( i = 0; i < 8; ++i ) S->h[i] = blake2b_IV[i];
}
/* init xors IV with input parameter block */
int blake2b_init_param( blake2b_state *S, const blake2b_param *P )
{
const uint8_t *p = ( const uint8_t * )( P );
size_t i;
blake2b_init0( S );
/* IV XOR ParamBlock */
for( i = 0; i < 8; ++i )
S->h[i] ^= load64( p + sizeof( S->h[i] ) * i );
S->outlen = P->digest_length;
return 0;
}
int blake2b_init( blake2b_state *S, size_t outlen )
{
blake2b_param P[1];
if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1;
P->digest_length = (uint8_t)outlen;
P->key_length = 0;
P->fanout = 1;
P->depth = 1;
store32( &P->leaf_length, 0 );
store32( &P->node_offset, 0 );
store32( &P->xof_length, 0 );
P->node_depth = 0;
P->inner_length = 0;
memset( P->reserved, 0, sizeof( P->reserved ) );
memset( P->salt, 0, sizeof( P->salt ) );
memset( P->personal, 0, sizeof( P->personal ) );
return blake2b_init_param( S, P );
}
int blake2b_init_key( blake2b_state *S, size_t outlen, const void *key, size_t keylen )
{
blake2b_param P[1];
if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1;
if ( !key || !keylen || keylen > BLAKE2B_KEYBYTES ) return -1;
P->digest_length = (uint8_t)outlen;
P->key_length = (uint8_t)keylen;
P->fanout = 1;
P->depth = 1;
store32( &P->leaf_length, 0 );
store32( &P->node_offset, 0 );
store32( &P->xof_length, 0 );
P->node_depth = 0;
P->inner_length = 0;
memset( P->reserved, 0, sizeof( P->reserved ) );
memset( P->salt, 0, sizeof( P->salt ) );
memset( P->personal, 0, sizeof( P->personal ) );
if( blake2b_init_param( S, P ) < 0 ) return -1;
{
uint8_t block[BLAKE2B_BLOCKBYTES];
memset( block, 0, BLAKE2B_BLOCKBYTES );
memcpy( block, key, keylen );
blake2b_update( S, block, BLAKE2B_BLOCKBYTES );
secure_zero_memory( block, BLAKE2B_BLOCKBYTES ); /* Burn the key from stack */
}
return 0;
}
#define G(r,i,a,b,c,d) \
do { \
a = a + b + m[blake2b_sigma[r][2*i+0]]; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2*i+1]]; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while(0)
#define ROUND(r) \
do { \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); \
} while(0)
static void blake2b_compress_ref( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] )
{
uint64_t m[16];
uint64_t v[16];
size_t i;
for( i = 0; i < 16; ++i ) {
m[i] = load64( block + i * sizeof( m[i] ) );
}
for( i = 0; i < 8; ++i ) {
v[i] = S->h[i];
}
v[ 8] = blake2b_IV[0];
v[ 9] = blake2b_IV[1];
v[10] = blake2b_IV[2];
v[11] = blake2b_IV[3];
v[12] = blake2b_IV[4] ^ S->t[0];
v[13] = blake2b_IV[5] ^ S->t[1];
v[14] = blake2b_IV[6] ^ S->f[0];
v[15] = blake2b_IV[7] ^ S->f[1];
ROUND( 0 );
ROUND( 1 );
ROUND( 2 );
ROUND( 3 );
ROUND( 4 );
ROUND( 5 );
ROUND( 6 );
ROUND( 7 );
ROUND( 8 );
ROUND( 9 );
ROUND( 10 );
ROUND( 11 );
for( i = 0; i < 8; ++i ) {
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
}
}
#undef G
#undef ROUND
void blake2b_compress_sse2( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] );
void blake2b_compress_sse41( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] );
void blake2b_compress_avx2( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] );
static void (*blake2b_compress)( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] ) = blake2b_compress_ref;
void blake2_init_accel(void)
{
if (0);
#if HAVE_CFLAG_mavx2 == 1
else if (cpu_has_feature(CPU_FLAG_AVX2))
blake2b_compress = blake2b_compress_avx2;
#endif
#if HAVE_CFLAG_msse41 == 1
else if (cpu_has_feature(CPU_FLAG_SSE41))
blake2b_compress = blake2b_compress_sse41;
#endif
#if HAVE_CFLAG_msse2 == 1
else if (cpu_has_feature(CPU_FLAG_SSE2))
blake2b_compress = blake2b_compress_sse2;
#endif
else
blake2b_compress = blake2b_compress_ref;
}
int blake2b_update( blake2b_state *S, const void *pin, size_t inlen )
{
const unsigned char * in = (const unsigned char *)pin;
if( inlen > 0 )
{
size_t left = S->buflen;
size_t fill = BLAKE2B_BLOCKBYTES - left;
if( inlen > fill )
{
S->buflen = 0;
memcpy( S->buf + left, in, fill ); /* Fill buffer */
blake2b_increment_counter( S, BLAKE2B_BLOCKBYTES );
blake2b_compress( S, S->buf ); /* Compress */
in += fill; inlen -= fill;
while(inlen > BLAKE2B_BLOCKBYTES) {
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress( S, in );
in += BLAKE2B_BLOCKBYTES;
inlen -= BLAKE2B_BLOCKBYTES;
}
}
memcpy( S->buf + S->buflen, in, inlen );
S->buflen += inlen;
}
return 0;
}
int blake2b_final( blake2b_state *S, void *out, size_t outlen )
{
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
size_t i;
if( out == NULL || outlen < S->outlen )
return -1;
if( blake2b_is_lastblock( S ) )
return -1;
blake2b_increment_counter( S, S->buflen );
blake2b_set_lastblock( S );
memset( S->buf + S->buflen, 0, BLAKE2B_BLOCKBYTES - S->buflen ); /* Padding */
blake2b_compress( S, S->buf );
for( i = 0; i < 8; ++i ) /* Output full hash to temp buffer */
store64( buffer + sizeof( S->h[i] ) * i, S->h[i] );
memcpy( out, buffer, S->outlen );
secure_zero_memory(buffer, sizeof(buffer));
return 0;
}
/* inlen, at least, should be uint64_t. Others can be size_t. */
int blake2b( void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen )
{
blake2b_state S[1];
/* Verify parameters */
if ( NULL == in && inlen > 0 ) return -1;
if ( NULL == out ) return -1;
if( NULL == key && keylen > 0 ) return -1;
if( !outlen || outlen > BLAKE2B_OUTBYTES ) return -1;
if( keylen > BLAKE2B_KEYBYTES ) return -1;
if( keylen > 0 )
{
if( blake2b_init_key( S, outlen, key, keylen ) < 0 ) return -1;
}
else
{
if( blake2b_init( S, outlen ) < 0 ) return -1;
}
blake2b_update( S, ( const uint8_t * )in, inlen );
blake2b_final( S, out, outlen );
return 0;
}
int blake2( void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen ) {
return blake2b(out, outlen, in, inlen, key, keylen);
}
#if defined(SUPERCOP)
int crypto_hash( unsigned char *out, unsigned char *in, unsigned long long inlen )
{
return blake2b( out, BLAKE2B_OUTBYTES, in, inlen, NULL, 0 );
}
#endif
#if defined(BLAKE2B_SELFTEST)
#include <string.h>
#include "blake2-kat.h"
int main( void )
{
uint8_t key[BLAKE2B_KEYBYTES];
uint8_t buf[BLAKE2_KAT_LENGTH];
size_t i, step;
for( i = 0; i < BLAKE2B_KEYBYTES; ++i )
key[i] = ( uint8_t )i;
for( i = 0; i < BLAKE2_KAT_LENGTH; ++i )
buf[i] = ( uint8_t )i;
/* Test simple API */
for( i = 0; i < BLAKE2_KAT_LENGTH; ++i )
{
uint8_t hash[BLAKE2B_OUTBYTES];
blake2b( hash, BLAKE2B_OUTBYTES, buf, i, key, BLAKE2B_KEYBYTES );
if( 0 != memcmp( hash, blake2b_keyed_kat[i], BLAKE2B_OUTBYTES ) )
{
goto fail;
}
}
/* Test streaming API */
for(step = 1; step < BLAKE2B_BLOCKBYTES; ++step) {
for (i = 0; i < BLAKE2_KAT_LENGTH; ++i) {
uint8_t hash[BLAKE2B_OUTBYTES];
blake2b_state S;
uint8_t * p = buf;
size_t mlen = i;
int err = 0;
if( (err = blake2b_init_key(&S, BLAKE2B_OUTBYTES, key, BLAKE2B_KEYBYTES)) < 0 ) {
goto fail;
}
while (mlen >= step) {
if ( (err = blake2b_update(&S, p, step)) < 0 ) {
goto fail;
}
mlen -= step;
p += step;
}
if ( (err = blake2b_update(&S, p, mlen)) < 0) {
goto fail;
}
if ( (err = blake2b_final(&S, hash, BLAKE2B_OUTBYTES)) < 0) {
goto fail;
}
if (0 != memcmp(hash, blake2b_keyed_kat[i], BLAKE2B_OUTBYTES)) {
goto fail;
}
}
}
puts( "ok" );
return 0;
fail:
puts("error");
return -1;
}
#endif