btrfs-progs/kernel-shared/print-tree.c
David Sterba 55f22f2106 btrfs-progs: use strncpy_null everywhere
Use the safe version of strncpy that makes sure the string is
terminated.

To be noted:

- the conversion in scrub path handling was skipped
- sizes of device paths in some ioctl related structures is
  BTRFS_DEVICE_PATH_NAME_MAX + 1

Recently gcc 13.3 started to detect problems with our use of strncpy
potentially lacking the null terminator, warnings like:

cmds/inspect.c: In function ‘cmd_inspect_logical_resolve’:
cmds/inspect.c:294:33: warning: ‘__builtin_strncpy’ specified bound 4096 equals destination size [-Wstringop-truncation]
  294 |                                 strncpy(mount_path, mounted, PATH_MAX);
      |                                 ^

Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-20 10:15:52 +09:30

2336 lines
69 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <time.h>
#include <uuid/uuid.h>
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/print-tree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/compression.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/file-item.h"
#include "kernel-shared/tree-checker.h"
#include "common/defs.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/string-utils.h"
#include "uapi/btrfs.h"
static void print_dir_item_type(struct extent_buffer *eb,
struct btrfs_dir_item *di)
{
u8 type = btrfs_dir_ftype(eb, di);
static const char* dir_item_str[] = {
[BTRFS_FT_REG_FILE] = "FILE",
[BTRFS_FT_DIR] = "DIR",
[BTRFS_FT_CHRDEV] = "CHRDEV",
[BTRFS_FT_BLKDEV] = "BLKDEV",
[BTRFS_FT_FIFO] = "FIFO",
[BTRFS_FT_SOCK] = "SOCK",
[BTRFS_FT_SYMLINK] = "SYMLINK",
[BTRFS_FT_XATTR] = "XATTR"
};
if (type < ARRAY_SIZE(dir_item_str) && dir_item_str[type])
printf("%s", dir_item_str[type]);
else
printf("DIR_ITEM.%u", type);
}
static void print_dir_item(struct extent_buffer *eb, u32 size,
struct btrfs_dir_item *di)
{
u32 cur = 0;
u32 len;
u32 name_len;
u32 data_len;
char namebuf[BTRFS_NAME_LEN];
struct btrfs_disk_key location;
while (cur < size) {
btrfs_dir_item_key(eb, di, &location);
printf("\t\tlocation ");
btrfs_print_key(&location);
printf(" type ");
print_dir_item_type(eb, di);
printf("\n");
name_len = btrfs_dir_name_len(eb, di);
data_len = btrfs_dir_data_len(eb, di);
if (data_len + name_len + cur > size) {
error("invalid length, cur=%u name_len=%u data_len=%u size=%u",
cur, name_len, data_len, size);
break;
}
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\ttransid %llu data_len %u name_len %u\n",
btrfs_dir_transid(eb, di),
data_len, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("\t\tname: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(di + 1), len);
printf("\t\tname: %.*s\n", len, namebuf);
}
if (data_len) {
len = (data_len <= sizeof(namebuf)) ? data_len :
sizeof(namebuf);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("\t\tdata HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(di + 1) + name_len, len);
printf("\t\tdata %.*s\n", len, namebuf);
}
}
len = sizeof(*di) + name_len + data_len;
di = (struct btrfs_dir_item *)((char *)di + len);
cur += len;
}
}
static void print_inode_extref_item(struct extent_buffer *eb, u32 size,
struct btrfs_inode_extref *extref)
{
u32 cur = 0;
u32 len;
u32 name_len = 0;
u64 index = 0;
u64 parent_objid;
char namebuf[BTRFS_NAME_LEN];
while (cur < size) {
index = btrfs_inode_extref_index(eb, extref);
name_len = btrfs_inode_extref_name_len(eb, extref);
parent_objid = btrfs_inode_extref_parent(eb, extref);
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\tindex %llu parent %llu namelen %u ",
index, parent_objid, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("name: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)extref->name, len);
printf("name: %.*s\n", len, namebuf);
}
len = sizeof(*extref) + name_len;
extref = (struct btrfs_inode_extref *)((char *)extref + len);
cur += len;
}
}
static void print_inode_ref_item(struct extent_buffer *eb, u32 size,
struct btrfs_inode_ref *ref)
{
u32 cur = 0;
u32 len;
u32 name_len;
u64 index;
char namebuf[BTRFS_NAME_LEN];
while (cur < size) {
name_len = btrfs_inode_ref_name_len(eb, ref);
index = btrfs_inode_ref_index(eb, ref);
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\tindex %llu namelen %u ",
(unsigned long long)index, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("name: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(ref + 1), len);
printf("name: %.*s\n", len, namebuf);
}
len = sizeof(*ref) + name_len;
ref = (struct btrfs_inode_ref *)((char *)ref + len);
cur += len;
}
}
/* The minimal length for the string buffer of block group/chunk flags */
#define BG_FLAG_STRING_LEN 64
static void bg_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
char profile[BG_FLAG_STRING_LEN] = {};
const char *name;
ret[0] = '\0';
if (flags & BTRFS_BLOCK_GROUP_DATA) {
empty = 0;
strncpy_null(ret, "DATA", BG_FLAG_STRING_LEN);
}
if (flags & BTRFS_BLOCK_GROUP_METADATA) {
if (!empty)
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, "METADATA", BG_FLAG_STRING_LEN);
}
if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
if (!empty)
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, "SYSTEM", BG_FLAG_STRING_LEN);
}
name = btrfs_bg_type_to_raid_name(flags);
if (!name) {
snprintf(profile, BG_FLAG_STRING_LEN, "UNKNOWN.0x%llx",
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
} else {
/*
* Special handing for SINGLE profile, we don't output "SINGLE"
* for SINGLE profile, since there is no such bit for it.
* Thus here we only fill @profile if it's not single.
*/
if (strncmp(name, "SINGLE", strlen("SINGLE")) != 0)
strncpy_null(profile, name, BG_FLAG_STRING_LEN);
}
if (profile[0]) {
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, profile, BG_FLAG_STRING_LEN);
}
}
/*
* Caller should ensure sizeof(*ret) >= 64
* "OFF|SCANNING|INCONSISTENT|UNKNOWN(0xffffffffffffffff)"
*/
static void qgroup_flags_to_str(u64 flags, char *ret)
{
ret[0] = 0;
if (flags & BTRFS_QGROUP_STATUS_FLAG_ON)
strcpy(ret, "ON");
else
strcpy(ret, "OFF");
if (flags & BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
strcat(ret, "|SIMPLE_MODE");
if (flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN)
strcat(ret, "|SCANNING");
if (flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT)
strcat(ret, "|INCONSISTENT");
if (flags & ~BTRFS_QGROUP_STATUS_FLAGS_MASK)
sprintf(ret + strlen(ret), "|UNKNOWN(0x%llx)",
flags & ~BTRFS_QGROUP_STATUS_FLAGS_MASK);
}
void print_chunk_item(struct extent_buffer *eb, struct btrfs_chunk *chunk)
{
u16 num_stripes = btrfs_chunk_num_stripes(eb, chunk);
int i;
u32 chunk_item_size;
char chunk_flags_str[BG_FLAG_STRING_LEN] = {};
/* The chunk must contain at least one stripe */
if (num_stripes < 1) {
printf("invalid num_stripes: %u\n", num_stripes);
return;
}
chunk_item_size = btrfs_chunk_item_size(num_stripes);
if ((unsigned long)chunk + chunk_item_size > eb->len) {
printf("\t\tchunk item invalid\n");
return;
}
bg_flags_to_str(btrfs_chunk_type(eb, chunk), chunk_flags_str);
printf("\t\tlength %llu owner %llu stripe_len %llu type %s\n",
(unsigned long long)btrfs_chunk_length(eb, chunk),
(unsigned long long)btrfs_chunk_owner(eb, chunk),
(unsigned long long)btrfs_chunk_stripe_len(eb, chunk),
chunk_flags_str);
printf("\t\tio_align %u io_width %u sector_size %u\n",
btrfs_chunk_io_align(eb, chunk),
btrfs_chunk_io_width(eb, chunk),
btrfs_chunk_sector_size(eb, chunk));
printf("\t\tnum_stripes %hu sub_stripes %hu\n", num_stripes,
btrfs_chunk_sub_stripes(eb, chunk));
for (i = 0 ; i < num_stripes ; i++) {
unsigned char dev_uuid[BTRFS_UUID_SIZE];
char str_dev_uuid[BTRFS_UUID_UNPARSED_SIZE];
u64 uuid_offset;
u64 stripe_offset;
uuid_offset = (unsigned long)btrfs_stripe_dev_uuid_nr(chunk, i);
stripe_offset = (unsigned long)btrfs_stripe_nr(chunk, i);
if (uuid_offset < stripe_offset ||
(uuid_offset + BTRFS_UUID_SIZE) >
(stripe_offset + sizeof(struct btrfs_stripe))) {
printf("\t\t\tstripe %d invalid\n", i);
break;
}
read_extent_buffer(eb, dev_uuid,
uuid_offset,
BTRFS_UUID_SIZE);
uuid_unparse(dev_uuid, str_dev_uuid);
printf("\t\t\tstripe %d devid %llu offset %llu\n", i,
(unsigned long long)btrfs_stripe_devid_nr(eb, chunk, i),
(unsigned long long)btrfs_stripe_offset_nr(eb, chunk, i));
printf("\t\t\tdev_uuid %s\n", str_dev_uuid);
}
}
static void print_dev_item(struct extent_buffer *eb,
struct btrfs_dev_item *dev_item)
{
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
char fsid_str[BTRFS_UUID_UNPARSED_SIZE];
u8 uuid[BTRFS_UUID_SIZE];
u8 fsid[BTRFS_UUID_SIZE];
read_extent_buffer(eb, uuid,
(unsigned long)btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
uuid_unparse(uuid, uuid_str);
read_extent_buffer(eb, fsid,
(unsigned long)btrfs_device_fsid(dev_item),
BTRFS_UUID_SIZE);
uuid_unparse(fsid, fsid_str);
printf("\t\tdevid %llu total_bytes %llu bytes_used %llu\n"
"\t\tio_align %u io_width %u sector_size %u type %llu\n"
"\t\tgeneration %llu start_offset %llu dev_group %u\n"
"\t\tseek_speed %hhu bandwidth %hhu\n"
"\t\tuuid %s\n"
"\t\tfsid %s\n",
(unsigned long long)btrfs_device_id(eb, dev_item),
(unsigned long long)btrfs_device_total_bytes(eb, dev_item),
(unsigned long long)btrfs_device_bytes_used(eb, dev_item),
btrfs_device_io_align(eb, dev_item),
btrfs_device_io_width(eb, dev_item),
btrfs_device_sector_size(eb, dev_item),
(unsigned long long)btrfs_device_type(eb, dev_item),
(unsigned long long)btrfs_device_generation(eb, dev_item),
(unsigned long long)btrfs_device_start_offset(eb, dev_item),
btrfs_device_group(eb, dev_item),
btrfs_device_seek_speed(eb, dev_item),
btrfs_device_bandwidth(eb, dev_item),
uuid_str, fsid_str);
}
static void print_uuids(struct extent_buffer *eb)
{
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE];
char chunk_uuid[BTRFS_UUID_UNPARSED_SIZE];
u8 disk_uuid[BTRFS_UUID_SIZE];
read_extent_buffer(eb, disk_uuid, btrfs_header_fsid(),
BTRFS_FSID_SIZE);
fs_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0';
uuid_unparse(disk_uuid, fs_uuid);
read_extent_buffer(eb, disk_uuid,
btrfs_header_chunk_tree_uuid(eb),
BTRFS_UUID_SIZE);
chunk_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0';
uuid_unparse(disk_uuid, chunk_uuid);
printf("fs uuid %s\nchunk uuid %s\n", fs_uuid, chunk_uuid);
}
static void compress_type_to_str(u8 compress_type, char *ret)
{
switch (compress_type) {
case BTRFS_COMPRESS_NONE:
strcpy(ret, "none");
break;
case BTRFS_COMPRESS_ZLIB:
strcpy(ret, "zlib");
break;
case BTRFS_COMPRESS_LZO:
strcpy(ret, "lzo");
break;
case BTRFS_COMPRESS_ZSTD:
strcpy(ret, "zstd");
break;
default:
sprintf(ret, "UNKNOWN.%d", compress_type);
}
}
static const char* file_extent_type_to_str(u8 type)
{
switch (type) {
case BTRFS_FILE_EXTENT_INLINE: return "inline";
case BTRFS_FILE_EXTENT_PREALLOC: return "prealloc";
case BTRFS_FILE_EXTENT_REG: return "regular";
default: return "unknown";
}
}
static void print_file_extent_item(struct extent_buffer *eb,
int slot,
struct btrfs_file_extent_item *fi)
{
unsigned char extent_type = btrfs_file_extent_type(eb, fi);
char compress_str[16];
compress_type_to_str(btrfs_file_extent_compression(eb, fi),
compress_str);
printf("\t\tgeneration %llu type %hhu (%s)\n",
btrfs_file_extent_generation(eb, fi),
extent_type, file_extent_type_to_str(extent_type));
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
printf("\t\tinline extent data size %u ram_bytes %llu compression %hhu (%s)\n",
btrfs_file_extent_inline_item_len(eb, slot),
btrfs_file_extent_ram_bytes(eb, fi),
btrfs_file_extent_compression(eb, fi),
compress_str);
return;
}
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
printf("\t\tprealloc data disk byte %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi),
(unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi));
printf("\t\tprealloc data offset %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_offset(eb, fi),
(unsigned long long)btrfs_file_extent_num_bytes(eb, fi));
return;
}
printf("\t\textent data disk byte %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi),
(unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi));
printf("\t\textent data offset %llu nr %llu ram %llu\n",
(unsigned long long)btrfs_file_extent_offset(eb, fi),
(unsigned long long)btrfs_file_extent_num_bytes(eb, fi),
(unsigned long long)btrfs_file_extent_ram_bytes(eb, fi));
printf("\t\textent compression %hhu (%s)\n",
btrfs_file_extent_compression(eb, fi),
compress_str);
}
/* Caller should ensure sizeof(*ret) >= 16("DATA|TREE_BLOCK") */
static void extent_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
ret[0] = 0;
if (flags & BTRFS_EXTENT_FLAG_DATA) {
empty = 0;
strcpy(ret, "DATA");
}
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
if (!empty) {
empty = 0;
strcat(ret, "|");
}
strcat(ret, "TREE_BLOCK");
}
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
strcat(ret, "|");
strcat(ret, "FULL_BACKREF");
}
}
void print_extent_item(struct extent_buffer *eb, int slot, int metadata)
{
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
struct btrfs_shared_data_ref *sref;
struct btrfs_disk_key key;
unsigned long end;
unsigned long ptr;
int type;
u32 item_size = btrfs_item_size(eb, slot);
u64 flags;
u64 offset;
char flags_str[32] = {0};
if (item_size < sizeof(*ei))
return;
ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(eb, ei);
extent_flags_to_str(flags, flags_str);
printf("\t\trefs %llu gen %llu flags %s\n",
(unsigned long long)btrfs_extent_refs(eb, ei),
(unsigned long long)btrfs_extent_generation(eb, ei),
flags_str);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !metadata) {
struct btrfs_tree_block_info *info;
info = (struct btrfs_tree_block_info *)(ei + 1);
btrfs_tree_block_key(eb, info, &key);
printf("\t\ttree block ");
btrfs_print_key(&key);
printf(" level %d\n", btrfs_tree_block_level(eb, info));
iref = (struct btrfs_extent_inline_ref *)(info + 1);
} else if (metadata) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(eb, &tmp, slot);
printf("\t\ttree block skinny level %d\n", (int)tmp.offset);
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
} else{
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
while (ptr < end) {
u64 seq;
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_extent_inline_ref_type(eb, iref);
offset = btrfs_extent_inline_ref_offset(eb, iref);
seq = offset;
switch (type) {
case BTRFS_TREE_BLOCK_REF_KEY:
printf("\t\t(%u 0x%llx) tree block backref root ", type, seq);
print_objectid(stdout, offset, 0);
printf("\n");
break;
case BTRFS_SHARED_BLOCK_REF_KEY:
printf("\t\t(%u 0x%llx) shared block backref parent %llu\n",
type, seq, offset);
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
seq = hash_extent_data_ref(
btrfs_extent_data_ref_root(eb, dref),
btrfs_extent_data_ref_objectid(eb, dref),
btrfs_extent_data_ref_offset(eb, dref));
printf("\t\t(%u 0x%llx) extent data backref root ", type, seq);
print_objectid(stdout, btrfs_extent_data_ref_root(eb, dref), 0);
printf(" objectid %llu offset %llu count %u\n",
btrfs_extent_data_ref_objectid(eb, dref),
btrfs_extent_data_ref_offset(eb, dref),
btrfs_extent_data_ref_count(eb, dref));
break;
case BTRFS_SHARED_DATA_REF_KEY:
sref = (struct btrfs_shared_data_ref *)(iref + 1);
printf("\t\t(%u 0x%llx) shared data backref parent %llu count %u\n",
type, seq, offset, btrfs_shared_data_ref_count(eb, sref));
break;
case BTRFS_EXTENT_OWNER_REF_KEY:
printf("\t\(%u 0x%llx) textent owner root %llu\n",
type, seq, offset);
break;
default:
return;
}
ptr += btrfs_extent_inline_ref_size(type);
}
WARN_ON(ptr > end);
}
static void print_root_ref(struct extent_buffer *leaf, int slot, const char *tag)
{
struct btrfs_root_ref *ref;
char namebuf[BTRFS_NAME_LEN];
int namelen;
ref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
namelen = btrfs_root_ref_name_len(leaf, ref);
read_extent_buffer(leaf, namebuf, (unsigned long)(ref + 1), namelen);
printf("\t\troot %s key dirid %llu sequence %llu name %.*s\n", tag,
(unsigned long long)btrfs_root_ref_dirid(leaf, ref),
(unsigned long long)btrfs_root_ref_sequence(leaf, ref),
namelen, namebuf);
}
/*
* Caller must ensure sizeof(*ret) >= 7 "RDONLY"
*/
static void root_flags_to_str(u64 flags, char *ret)
{
if (flags & BTRFS_ROOT_SUBVOL_RDONLY)
strcat(ret, "RDONLY");
else
strcat(ret, "none");
}
static void print_timespec(struct extent_buffer *eb,
struct btrfs_timespec *timespec, const char *prefix,
const char *suffix)
{
struct tm tm;
u64 tmp_u64;
u32 tmp_u32;
time_t tmp_time;
char timestamp[256];
tmp_u64 = btrfs_timespec_sec(eb, timespec);
tmp_u32 = btrfs_timespec_nsec(eb, timespec);
tmp_time = tmp_u64;
localtime_r(&tmp_time, &tm);
strftime(timestamp, sizeof(timestamp),
"%Y-%m-%d %H:%M:%S", &tm);
printf("%s%llu.%u (%s)%s", prefix, (unsigned long long)tmp_u64, tmp_u32,
timestamp, suffix);
}
static void print_root_item(struct extent_buffer *leaf, int slot)
{
struct btrfs_root_item *ri;
struct btrfs_root_item root_item;
int len;
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
char flags_str[32] = {0};
struct btrfs_key drop_key;
ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
len = btrfs_item_size(leaf, slot);
memset(&root_item, 0, sizeof(root_item));
read_extent_buffer(leaf, &root_item, (unsigned long)ri, len);
root_flags_to_str(btrfs_root_flags(&root_item), flags_str);
printf("\t\tgeneration %llu root_dirid %llu bytenr %llu byte_limit %llu bytes_used %llu\n",
(unsigned long long)btrfs_root_generation(&root_item),
(unsigned long long)btrfs_root_dirid(&root_item),
(unsigned long long)btrfs_root_bytenr(&root_item),
(unsigned long long)btrfs_root_limit(&root_item),
(unsigned long long)btrfs_root_used(&root_item));
printf("\t\tlast_snapshot %llu flags 0x%llx(%s) refs %u\n",
(unsigned long long)btrfs_root_last_snapshot(&root_item),
(unsigned long long)btrfs_root_flags(&root_item),
flags_str,
btrfs_root_refs(&root_item));
btrfs_disk_key_to_cpu(&drop_key, &root_item.drop_progress);
printf("\t\tdrop_progress ");
btrfs_print_key(&root_item.drop_progress);
printf(" drop_level %hhu\n", root_item.drop_level);
printf("\t\tlevel %hhu generation_v2 %llu\n",
btrfs_root_level(&root_item), root_item.generation_v2);
if (root_item.generation == root_item.generation_v2) {
uuid_unparse(root_item.uuid, uuid_str);
printf("\t\tuuid %s\n", uuid_str);
uuid_unparse(root_item.parent_uuid, uuid_str);
printf("\t\tparent_uuid %s\n", uuid_str);
uuid_unparse(root_item.received_uuid, uuid_str);
printf("\t\treceived_uuid %s\n", uuid_str);
printf("\t\tctransid %llu otransid %llu stransid %llu rtransid %llu\n",
btrfs_root_ctransid(&root_item),
btrfs_root_otransid(&root_item),
btrfs_root_stransid(&root_item),
btrfs_root_rtransid(&root_item));
print_timespec(leaf, btrfs_root_ctime(ri),
"\t\tctime ", "\n");
print_timespec(leaf, btrfs_root_otime(ri),
"\t\totime ", "\n");
print_timespec(leaf, btrfs_root_stime(ri),
"\t\tstime ", "\n");
print_timespec(leaf, btrfs_root_rtime(ri),
"\t\trtime ", "\n");
}
}
static void print_free_space_header(struct extent_buffer *leaf, int slot)
{
struct btrfs_free_space_header *header;
struct btrfs_disk_key location;
header = btrfs_item_ptr(leaf, slot, struct btrfs_free_space_header);
btrfs_free_space_key(leaf, header, &location);
printf("\t\tlocation ");
btrfs_print_key(&location);
printf("\n");
printf("\t\tcache generation %llu entries %llu bitmaps %llu\n",
(unsigned long long)btrfs_free_space_generation(leaf, header),
(unsigned long long)btrfs_free_space_entries(leaf, header),
(unsigned long long)btrfs_free_space_bitmaps(leaf, header));
}
struct raid_encoding_map {
u8 encoding;
char name[16];
};
static const struct raid_encoding_map raid_map[] = {
{ BTRFS_STRIPE_DUP, "DUP" },
{ BTRFS_STRIPE_RAID0, "RAID0" },
{ BTRFS_STRIPE_RAID1, "RAID1" },
{ BTRFS_STRIPE_RAID1C3, "RAID1C3" },
{ BTRFS_STRIPE_RAID1C4, "RAID1C4" },
{ BTRFS_STRIPE_RAID5, "RAID5" },
{ BTRFS_STRIPE_RAID6, "RAID6" },
{ BTRFS_STRIPE_RAID10, "RAID10" }
};
static const char *stripe_encoding_name(u8 encoding)
{
for (int i = 0; i < ARRAY_SIZE(raid_map); i++) {
if (raid_map[i].encoding == encoding)
return raid_map[i].name;
}
return "UNKNOWN";
}
static void print_raid_stripe_key(struct extent_buffer *eb,
u32 item_size, struct btrfs_stripe_extent *stripe)
{
int num_stripes;
u8 encoding = btrfs_stripe_extent_encoding(eb, stripe);
num_stripes = (item_size - offsetof(struct btrfs_stripe_extent, strides)) /
sizeof(struct btrfs_raid_stride);
printf("\t\t\tencoding: %s\n", stripe_encoding_name(encoding));
for (int i = 0; i < num_stripes; i++)
printf("\t\t\tstripe %d devid %llu physical %llu\n", i,
(unsigned long long)btrfs_raid_stride_devid_nr(eb, stripe, i),
(unsigned long long)btrfs_raid_stride_offset_nr(eb, stripe, i));
}
void print_key_type(FILE *stream, u64 objectid, u8 type)
{
static const char* key_to_str[256] = {
[BTRFS_INODE_ITEM_KEY] = "INODE_ITEM",
[BTRFS_INODE_REF_KEY] = "INODE_REF",
[BTRFS_INODE_EXTREF_KEY] = "INODE_EXTREF",
[BTRFS_DIR_ITEM_KEY] = "DIR_ITEM",
[BTRFS_DIR_INDEX_KEY] = "DIR_INDEX",
[BTRFS_DIR_LOG_ITEM_KEY] = "DIR_LOG_ITEM",
[BTRFS_DIR_LOG_INDEX_KEY] = "DIR_LOG_INDEX",
[BTRFS_XATTR_ITEM_KEY] = "XATTR_ITEM",
[BTRFS_VERITY_DESC_ITEM_KEY] = "VERITY_DESC_ITEM",
[BTRFS_VERITY_MERKLE_ITEM_KEY] = "VERITY_MERKLE_ITEM",
[BTRFS_ORPHAN_ITEM_KEY] = "ORPHAN_ITEM",
[BTRFS_ROOT_ITEM_KEY] = "ROOT_ITEM",
[BTRFS_ROOT_REF_KEY] = "ROOT_REF",
[BTRFS_ROOT_BACKREF_KEY] = "ROOT_BACKREF",
[BTRFS_EXTENT_ITEM_KEY] = "EXTENT_ITEM",
[BTRFS_METADATA_ITEM_KEY] = "METADATA_ITEM",
[BTRFS_TREE_BLOCK_REF_KEY] = "TREE_BLOCK_REF",
[BTRFS_SHARED_BLOCK_REF_KEY] = "SHARED_BLOCK_REF",
[BTRFS_EXTENT_DATA_REF_KEY] = "EXTENT_DATA_REF",
[BTRFS_SHARED_DATA_REF_KEY] = "SHARED_DATA_REF",
[BTRFS_EXTENT_REF_V0_KEY] = "EXTENT_REF_V0",
[BTRFS_EXTENT_OWNER_REF_KEY] = "EXTENT_OWNER_REF",
[BTRFS_CSUM_ITEM_KEY] = "CSUM_ITEM",
[BTRFS_EXTENT_CSUM_KEY] = "EXTENT_CSUM",
[BTRFS_EXTENT_DATA_KEY] = "EXTENT_DATA",
[BTRFS_BLOCK_GROUP_ITEM_KEY] = "BLOCK_GROUP_ITEM",
[BTRFS_FREE_SPACE_INFO_KEY] = "FREE_SPACE_INFO",
[BTRFS_FREE_SPACE_EXTENT_KEY] = "FREE_SPACE_EXTENT",
[BTRFS_FREE_SPACE_BITMAP_KEY] = "FREE_SPACE_BITMAP",
[BTRFS_CHUNK_ITEM_KEY] = "CHUNK_ITEM",
[BTRFS_DEV_ITEM_KEY] = "DEV_ITEM",
[BTRFS_DEV_EXTENT_KEY] = "DEV_EXTENT",
[BTRFS_TEMPORARY_ITEM_KEY] = "TEMPORARY_ITEM",
[BTRFS_DEV_REPLACE_KEY] = "DEV_REPLACE",
[BTRFS_STRING_ITEM_KEY] = "STRING_ITEM",
[BTRFS_QGROUP_STATUS_KEY] = "QGROUP_STATUS",
[BTRFS_QGROUP_RELATION_KEY] = "QGROUP_RELATION",
[BTRFS_QGROUP_INFO_KEY] = "QGROUP_INFO",
[BTRFS_QGROUP_LIMIT_KEY] = "QGROUP_LIMIT",
[BTRFS_PERSISTENT_ITEM_KEY] = "PERSISTENT_ITEM",
[BTRFS_UUID_KEY_SUBVOL] = "UUID_KEY_SUBVOL",
[BTRFS_UUID_KEY_RECEIVED_SUBVOL] = "UUID_KEY_RECEIVED_SUBVOL",
[BTRFS_RAID_STRIPE_KEY] = "RAID_STRIPE",
};
if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) {
fprintf(stream, "UNTYPED");
return;
}
if (key_to_str[type])
fputs(key_to_str[type], stream);
else
fprintf(stream, "UNKNOWN.%d", type);
}
void print_objectid(FILE *stream, u64 objectid, u8 type)
{
switch (type) {
case BTRFS_PERSISTENT_ITEM_KEY:
if (objectid == BTRFS_DEV_STATS_OBJECTID)
fprintf(stream, "DEV_STATS");
else
fprintf(stream, "%llu", (unsigned long long)objectid);
return;
case BTRFS_DEV_EXTENT_KEY:
/* device id */
fprintf(stream, "%llu", (unsigned long long)objectid);
return;
case BTRFS_QGROUP_RELATION_KEY:
fprintf(stream, "%u/%llu", btrfs_qgroup_level(objectid),
btrfs_qgroup_subvolid(objectid));
return;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
fprintf(stream, "0x%016llx", (unsigned long long)objectid);
return;
}
switch (objectid) {
case BTRFS_ROOT_TREE_OBJECTID:
/*
* BTRFS_ROOT_TREE_OBJECTID and BTRFS_DEV_ITEMS_OBJECTID are
* defined with the same value 1, we need to distinguish them
* by the type.
*/
if (type == BTRFS_DEV_ITEM_KEY)
fprintf(stream, "DEV_ITEMS");
else
fprintf(stream, "ROOT_TREE");
break;
case BTRFS_EXTENT_TREE_OBJECTID:
fprintf(stream, "EXTENT_TREE");
break;
case BTRFS_CHUNK_TREE_OBJECTID:
fprintf(stream, "CHUNK_TREE");
break;
case BTRFS_DEV_TREE_OBJECTID:
fprintf(stream, "DEV_TREE");
break;
case BTRFS_FS_TREE_OBJECTID:
fprintf(stream, "FS_TREE");
break;
case BTRFS_ROOT_TREE_DIR_OBJECTID:
fprintf(stream, "ROOT_TREE_DIR");
break;
case BTRFS_CSUM_TREE_OBJECTID:
fprintf(stream, "CSUM_TREE");
break;
case BTRFS_BALANCE_OBJECTID:
fprintf(stream, "BALANCE");
break;
case BTRFS_ORPHAN_OBJECTID:
fprintf(stream, "ORPHAN");
break;
case BTRFS_TREE_LOG_OBJECTID:
fprintf(stream, "TREE_LOG");
break;
case BTRFS_TREE_LOG_FIXUP_OBJECTID:
fprintf(stream, "LOG_FIXUP");
break;
case BTRFS_TREE_RELOC_OBJECTID:
fprintf(stream, "TREE_RELOC");
break;
case BTRFS_DATA_RELOC_TREE_OBJECTID:
fprintf(stream, "DATA_RELOC_TREE");
break;
case BTRFS_EXTENT_CSUM_OBJECTID:
fprintf(stream, "EXTENT_CSUM");
break;
case BTRFS_FREE_SPACE_OBJECTID:
fprintf(stream, "FREE_SPACE");
break;
case BTRFS_FREE_INO_OBJECTID:
fprintf(stream, "FREE_INO");
break;
case BTRFS_QUOTA_TREE_OBJECTID:
fprintf(stream, "QUOTA_TREE");
break;
case BTRFS_UUID_TREE_OBJECTID:
fprintf(stream, "UUID_TREE");
break;
case BTRFS_FREE_SPACE_TREE_OBJECTID:
fprintf(stream, "FREE_SPACE_TREE");
break;
case BTRFS_MULTIPLE_OBJECTIDS:
fprintf(stream, "MULTIPLE");
break;
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
fprintf(stream, "BLOCK_GROUP_TREE");
break;
case BTRFS_CSUM_CHANGE_OBJECTID:
fprintf(stream, "CSUM_CHANGE");
break;
case BTRFS_RAID_STRIPE_TREE_OBJECTID:
fprintf(stream, "RAID_STRIPE_TREE");
break;
case (u64)-1:
fprintf(stream, "-1");
break;
case BTRFS_FIRST_CHUNK_TREE_OBJECTID:
if (type == BTRFS_CHUNK_ITEM_KEY) {
fprintf(stream, "FIRST_CHUNK_TREE");
break;
}
fallthrough;
default:
fprintf(stream, "%llu", (unsigned long long)objectid);
}
}
void btrfs_print_key(struct btrfs_disk_key *disk_key)
{
u64 objectid = btrfs_disk_key_objectid(disk_key);
u8 type = btrfs_disk_key_type(disk_key);
u64 offset = btrfs_disk_key_offset(disk_key);
printf("key (");
print_objectid(stdout, objectid, type);
printf(" ");
print_key_type(stdout, objectid, type);
switch (type) {
case BTRFS_QGROUP_RELATION_KEY:
case BTRFS_QGROUP_INFO_KEY:
case BTRFS_QGROUP_LIMIT_KEY:
printf(" %u/%llu)", btrfs_qgroup_level(offset),
btrfs_qgroup_subvolid(offset));
break;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
printf(" 0x%016llx)", (unsigned long long)offset);
break;
/*
* Key offsets of ROOT_ITEM point to tree root, print them in human
* readable format. Especially useful for trees like data/tree reloc
* tree, whose tree id can be negative.
*/
case BTRFS_ROOT_ITEM_KEY:
printf(" ");
/*
* Normally offset of ROOT_ITEM should present the generation
* of creation time of the root.
* However if this is reloc tree, offset is the subvolume
* id of its source. Here we do extra check on this.
*/
if (objectid == BTRFS_TREE_RELOC_OBJECTID)
print_objectid(stdout, offset, type);
else
printf("%llu", offset);
printf(")");
break;
default:
if (offset == (u64)-1)
printf(" -1)");
else
printf(" %llu)", (unsigned long long)offset);
break;
}
}
static void print_uuid_item(struct extent_buffer *l, unsigned long offset,
u32 item_size)
{
if (item_size & (sizeof(u64) - 1)) {
printf("btrfs: uuid item with illegal size %lu!\n",
(unsigned long)item_size);
return;
}
while (item_size) {
__le64 subvol_id;
read_extent_buffer(l, &subvol_id, offset, sizeof(u64));
printf("\t\tsubvol_id %llu\n",
(unsigned long long)le64_to_cpu(subvol_id));
item_size -= sizeof(u64);
offset += sizeof(u64);
}
}
/* Btrfs inode flag stringification helper */
#define STRCAT_ONE_INODE_FLAG(flags, name, empty, dst) ({ \
if (flags & BTRFS_INODE_##name) { \
if (!empty) \
strcat(dst, "|"); \
strcat(dst, #name); \
empty = 0; \
} \
})
/*
* Caller should ensure sizeof(*ret) >= 102: all characters plus '|' of
* BTRFS_INODE_* flags
*/
static void inode_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
STRCAT_ONE_INODE_FLAG(flags, NODATASUM, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NODATACOW, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, READONLY, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NOCOMPRESS, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, PREALLOC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, SYNC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, IMMUTABLE, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, APPEND, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NODUMP, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NOATIME, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, DIRSYNC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, COMPRESS, empty, ret);
if (empty)
strcat(ret, "none");
}
static void print_inode_item(struct extent_buffer *eb,
struct btrfs_inode_item *ii)
{
char flags_str[256];
memset(flags_str, 0, sizeof(flags_str));
inode_flags_to_str(btrfs_inode_flags(eb, ii), flags_str);
printf("\t\tgeneration %llu transid %llu size %llu nbytes %llu\n"
"\t\tblock group %llu mode %o links %u uid %u gid %u rdev %llu\n"
"\t\tsequence %llu flags 0x%llx(%s)\n",
(unsigned long long)btrfs_inode_generation(eb, ii),
(unsigned long long)btrfs_inode_transid(eb, ii),
(unsigned long long)btrfs_inode_size(eb, ii),
(unsigned long long)btrfs_inode_nbytes(eb, ii),
(unsigned long long)btrfs_inode_block_group(eb,ii),
btrfs_inode_mode(eb, ii),
btrfs_inode_nlink(eb, ii),
btrfs_inode_uid(eb, ii),
btrfs_inode_gid(eb, ii),
(unsigned long long)btrfs_inode_rdev(eb,ii),
(unsigned long long)btrfs_inode_sequence(eb, ii),
(unsigned long long)btrfs_inode_flags(eb,ii),
flags_str);
print_timespec(eb, btrfs_inode_atime(ii), "\t\tatime ", "\n");
print_timespec(eb, btrfs_inode_ctime(ii), "\t\tctime ", "\n");
print_timespec(eb, btrfs_inode_mtime(ii), "\t\tmtime ", "\n");
print_timespec(eb, btrfs_inode_otime(ii), "\t\totime ", "\n");
}
static void print_disk_balance_args(struct btrfs_disk_balance_args *ba)
{
printf("\t\tprofiles %llu devid %llu target %llu flags %llu\n",
(unsigned long long)le64_to_cpu(ba->profiles),
(unsigned long long)le64_to_cpu(ba->devid),
(unsigned long long)le64_to_cpu(ba->target),
(unsigned long long)le64_to_cpu(ba->flags));
printf("\t\tusage_min %u usage_max %u pstart %llu pend %llu\n",
le32_to_cpu(ba->usage_min),
le32_to_cpu(ba->usage_max),
(unsigned long long)le64_to_cpu(ba->pstart),
(unsigned long long)le64_to_cpu(ba->pend));
printf("\t\tvstart %llu vend %llu limit_min %u limit_max %u\n",
(unsigned long long)le64_to_cpu(ba->vstart),
(unsigned long long)le64_to_cpu(ba->vend),
le32_to_cpu(ba->limit_min),
le32_to_cpu(ba->limit_max));
printf("\t\tstripes_min %u stripes_max %u\n",
le32_to_cpu(ba->stripes_min),
le32_to_cpu(ba->stripes_max));
}
static void print_balance_item(struct extent_buffer *eb,
struct btrfs_balance_item *bi)
{
struct btrfs_disk_balance_args ba;
printf("\t\tbalance status flags %llu\n",
btrfs_balance_flags(eb, bi));
printf("\t\tDATA\n");
btrfs_balance_data(eb, bi, &ba);
print_disk_balance_args(&ba);
printf("\t\tMETADATA\n");
btrfs_balance_meta(eb, bi, &ba);
print_disk_balance_args(&ba);
printf("\t\tSYSTEM\n");
btrfs_balance_sys(eb, bi, &ba);
print_disk_balance_args(&ba);
}
static void print_dev_stats(struct extent_buffer *eb,
struct btrfs_dev_stats_item *stats, u32 size)
{
u32 known = BTRFS_DEV_STAT_VALUES_MAX * sizeof(__le64);
int i;
printf("\t\tdevice stats\n");
printf("\t\twrite_errs %llu read_errs %llu flush_errs %llu corruption_errs %llu generation %llu\n",
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_GENERATION_ERRS));
if (known < size) {
printf("\t\tunknown stats item bytes %u", size - known);
for (i = BTRFS_DEV_STAT_VALUES_MAX; i * sizeof(__le64) < size; i++) {
printf("\t\tunknown item %d offset %zu value %llu\n",
i, i * sizeof(__le64),
btrfs_dev_stats_value(eb, stats, i));
}
}
}
static void print_block_group_item(struct extent_buffer *eb,
struct btrfs_block_group_item *bgi)
{
struct btrfs_block_group_item bg_item;
char flags_str[BG_FLAG_STRING_LEN] = {};
read_extent_buffer(eb, &bg_item, (unsigned long)bgi, sizeof(bg_item));
memset(flags_str, 0, sizeof(flags_str));
bg_flags_to_str(btrfs_stack_block_group_flags(&bg_item), flags_str);
printf("\t\tblock group used %llu chunk_objectid %llu flags %s\n",
btrfs_stack_block_group_used(&bg_item),
btrfs_stack_block_group_chunk_objectid(&bg_item),
flags_str);
}
static void print_extent_data_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_extent_data_ref *dref;
dref = btrfs_item_ptr(eb, slot, struct btrfs_extent_data_ref);
printf("\t\textent data backref root ");
print_objectid(stdout,
(unsigned long long)btrfs_extent_data_ref_root(eb, dref), 0);
printf(" objectid %llu offset %llu count %u\n",
(unsigned long long)btrfs_extent_data_ref_objectid(eb, dref),
(unsigned long long)btrfs_extent_data_ref_offset(eb, dref),
btrfs_extent_data_ref_count(eb, dref));
}
static void print_shared_data_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_shared_data_ref *sref;
sref = btrfs_item_ptr(eb, slot, struct btrfs_shared_data_ref);
printf("\t\tshared data backref count %u\n",
btrfs_shared_data_ref_count(eb, sref));
}
static void print_extent_owner_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_extent_owner_ref *oref;
u64 root_id;
oref = btrfs_item_ptr(eb, slot, struct btrfs_extent_owner_ref);
root_id = btrfs_extent_owner_ref_root_id(eb, oref);
printf("\t\textent owner root %llu\n", root_id);
}
static void print_free_space_info(struct extent_buffer *eb, int slot)
{
struct btrfs_free_space_info *free_info;
free_info = btrfs_item_ptr(eb, slot, struct btrfs_free_space_info);
printf("\t\tfree space info extent count %u flags %u\n",
(unsigned)btrfs_free_space_extent_count(eb, free_info),
(unsigned)btrfs_free_space_flags(eb, free_info));
}
static void print_dev_extent(struct extent_buffer *eb, int slot)
{
struct btrfs_dev_extent *dev_extent;
u8 uuid[BTRFS_UUID_SIZE];
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
dev_extent = btrfs_item_ptr(eb, slot, struct btrfs_dev_extent);
read_extent_buffer(eb, uuid,
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent),
BTRFS_UUID_SIZE);
uuid_unparse(uuid, uuid_str);
printf("\t\tdev extent chunk_tree %llu\n"
"\t\tchunk_objectid %llu chunk_offset %llu "
"length %llu\n"
"\t\tchunk_tree_uuid %s\n",
(unsigned long long)btrfs_dev_extent_chunk_tree(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_chunk_objectid(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_chunk_offset(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_length(eb, dev_extent),
uuid_str);
}
static void print_qgroup_status(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_status_item *qg_status;
char flags_str[256];
qg_status = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item);
memset(flags_str, 0, sizeof(flags_str));
qgroup_flags_to_str(btrfs_qgroup_status_flags(eb, qg_status),
flags_str);
printf("\t\tversion %llu generation %llu flags %s scan %llu",
(unsigned long long)btrfs_qgroup_status_version(eb, qg_status),
(unsigned long long)btrfs_qgroup_status_generation(eb, qg_status),
flags_str,
(unsigned long long)btrfs_qgroup_status_rescan(eb, qg_status));
if (btrfs_fs_incompat(eb->fs_info, SIMPLE_QUOTA))
printf(" enable_gen %llu\n",
(unsigned long long)btrfs_qgroup_status_enable_gen(eb, qg_status));
else
printf("\n");
}
static void print_qgroup_info(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_info_item *qg_info;
qg_info = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_info_item);
printf("\t\tgeneration %llu\n"
"\t\treferenced %llu referenced_compressed %llu\n"
"\t\texclusive %llu exclusive_compressed %llu\n",
(unsigned long long)btrfs_qgroup_info_generation(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_rfer(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_rfer_cmpr(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_excl(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_excl_cmpr(eb, qg_info));
}
static void print_qgroup_limit(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_limit_item *qg_limit;
qg_limit = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_limit_item);
printf("\t\tflags %llx\n"
"\t\tmax_referenced %lld max_exclusive %lld\n"
"\t\trsv_referenced %lld rsv_exclusive %lld\n",
(unsigned long long)btrfs_qgroup_limit_flags(eb, qg_limit),
(long long)btrfs_qgroup_limit_max_rfer(eb, qg_limit),
(long long)btrfs_qgroup_limit_max_excl(eb, qg_limit),
(long long)btrfs_qgroup_limit_rsv_rfer(eb, qg_limit),
(long long)btrfs_qgroup_limit_rsv_excl(eb, qg_limit));
}
static void print_persistent_item(struct extent_buffer *eb, void *ptr,
u32 item_size, u64 objectid, u64 offset)
{
printf("\t\tpersistent item objectid ");
print_objectid(stdout, objectid, BTRFS_PERSISTENT_ITEM_KEY);
printf(" offset %llu\n", (unsigned long long)offset);
switch (objectid) {
case BTRFS_DEV_STATS_OBJECTID:
print_dev_stats(eb, ptr, item_size);
break;
default:
printf("\t\tunknown persistent item objectid %llu\n", objectid);
}
}
static void print_temporary_item(struct extent_buffer *eb, void *ptr,
u64 objectid, u64 offset)
{
printf("\t\ttemporary item objectid ");
print_objectid(stdout, objectid, BTRFS_TEMPORARY_ITEM_KEY);
printf(" offset %llu\n", (unsigned long long)offset);
switch (objectid) {
case BTRFS_BALANCE_OBJECTID:
print_balance_item(eb, ptr);
break;
case BTRFS_CSUM_CHANGE_OBJECTID:
if (offset < btrfs_get_num_csums())
printf("\t\ttarget csum type %s (%llu)\n",
btrfs_super_csum_name(offset) ,offset);
else
printf("\t\tunknown csum type %llu\n", offset);
break;
default:
printf("\t\tunknown temporary item objectid %llu\n", objectid);
}
}
static void print_extent_csum(struct extent_buffer *eb,
int item_size, u64 offset, void *ptr, bool print_csum_items)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u32 size;
int csum_size;
/*
* If we don't have fs_info, only output its start position as we
* don't have sectorsize for the calculation
*/
if (!fs_info) {
printf("\t\trange start %llu\n", (unsigned long long)offset);
return;
}
csum_size = fs_info->csum_size;
size = (item_size / csum_size) * fs_info->sectorsize;
printf("\t\trange start %llu end %llu length %u\n",
(unsigned long long)offset,
(unsigned long long)offset + size, size);
/*
* Fill one long line, which is 1 item of sha256/blake2,
* 2x xxhash, 4x crc32c with format:
* [offset] 0xCHECKSUM [offset] 0xCHECKSUM
*/
if (print_csum_items) {
const int one_line = max(1, BTRFS_CSUM_SIZE / csum_size / 2);
int curline;
const u8 *csum = (const u8 *)(eb->data + (unsigned long)ptr);
curline = one_line;
while (size > 0) {
int i;
if (curline == one_line) {
printf("\t\t");
} else if (curline == 0) {
curline = one_line;
printf("\n\t\t");
} else {
putchar(' ');
}
printf("[%llu] 0x", offset);
for (i = 0; i < csum_size; i++)
printf("%02x", *csum++);
offset += fs_info->sectorsize;
size -= fs_info->sectorsize;
curline--;
}
putchar('\n');
}
}
/* Caller must ensure sizeof(*ret) >= 14 "WRITTEN|RELOC" */
static void header_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
ret[0] = 0;
if (flags & BTRFS_HEADER_FLAG_WRITTEN) {
empty = 0;
strcpy(ret, "WRITTEN");
}
if (flags & BTRFS_HEADER_FLAG_RELOC) {
if (!empty)
strcat(ret, "|");
strcat(ret, "RELOC");
}
}
static void print_header_info(struct extent_buffer *eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
char flags_str[128];
#if EXPERIMENTAL
u8 csum[BTRFS_CSUM_SIZE];
#endif
u64 flags;
u32 nr;
u8 backref_rev;
char csum_str[2 * BTRFS_CSUM_SIZE + strlen(" csum 0x") + 1];
int i;
int csum_size = fs_info->csum_size;
flags = btrfs_header_flags(eb) & ~BTRFS_BACKREF_REV_MASK;
backref_rev = btrfs_header_flags(eb) >> BTRFS_BACKREF_REV_SHIFT;
header_flags_to_str(flags, flags_str);
nr = btrfs_header_nritems(eb);
if (btrfs_header_level(eb))
printf(
"node %llu level %d items %u free space %u generation %llu owner ",
(unsigned long long)eb->start, btrfs_header_level(eb),
nr, (u32)BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb) - nr,
(unsigned long long)btrfs_header_generation(eb));
else
printf(
"leaf %llu items %u free space %d generation %llu owner ",
(unsigned long long)btrfs_header_bytenr(eb), nr,
btrfs_leaf_free_space(eb),
(unsigned long long)btrfs_header_generation(eb));
print_objectid(stdout, btrfs_header_owner(eb), 0);
printf("\n");
if (fs_info && (mode & BTRFS_PRINT_TREE_CSUM_HEADERS)) {
char *tmp = csum_str;
u8 *tree_csum = (u8 *)(eb->data + offsetof(struct btrfs_header, csum));
strcpy(csum_str, " csum 0x");
tmp = csum_str + strlen(csum_str);
for (i = 0; i < csum_size; i++) {
sprintf(tmp, "%02x", tree_csum[i]);
tmp++;
tmp++;
}
} else {
/* We don't have fs_info, can't print the csum */
csum_str[0] = 0;
}
printf("%s %llu flags 0x%llx(%s) backref revision %d%s\n",
btrfs_header_level(eb) ? "node" : "leaf",
btrfs_header_bytenr(eb), flags, flags_str, backref_rev,
csum_str);
#if EXPERIMENTAL
printf("checksum stored ");
for (i = 0; i < csum_size; i++)
printf("%02hhx", (int)(eb->data[i]));
printf("\n");
memset(csum, 0, sizeof(csum));
btrfs_csum_data(fs_info, btrfs_super_csum_type(fs_info->super_copy),
(u8 *)eb->data + BTRFS_CSUM_SIZE,
csum, fs_info->nodesize - BTRFS_CSUM_SIZE);
printf("checksum calced ");
for (i = 0; i < csum_size; i++)
printf("%02hhx", (int)(csum[i]));
printf("\n");
#endif
print_uuids(eb);
fflush(stdout);
}
#define DEV_REPLACE_STRING_LEN 64
#define CASE_DEV_REPLACE_MODE_ENTRY(dest, name) \
case BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_##name: \
strncpy_null((dest), #name, DEV_REPLACE_STRING_LEN); \
break;
static void replace_mode_to_str(u64 flags, char *ret)
{
ret[0] = 0;
switch(flags) {
CASE_DEV_REPLACE_MODE_ENTRY(ret, ALWAYS);
CASE_DEV_REPLACE_MODE_ENTRY(ret, AVOID);
default:
snprintf(ret, DEV_REPLACE_STRING_LEN, "unknown(%llu)", flags);
}
}
#undef DEV_REPLACE_MODE_ENTRY
#define CASE_DEV_REPLACE_STATE_ENTRY(dest, name) \
case BTRFS_IOCTL_DEV_REPLACE_STATE_##name: \
strncpy_null((dest), #name, DEV_REPLACE_STRING_LEN); \
break;
static void replace_state_to_str(u64 flags, char *ret)
{
ret[0] = '\0';
switch(flags) {
CASE_DEV_REPLACE_STATE_ENTRY(ret, NEVER_STARTED);
CASE_DEV_REPLACE_STATE_ENTRY(ret, FINISHED);
CASE_DEV_REPLACE_STATE_ENTRY(ret, CANCELED);
CASE_DEV_REPLACE_STATE_ENTRY(ret, STARTED);
CASE_DEV_REPLACE_STATE_ENTRY(ret, SUSPENDED);
default:
snprintf(ret, DEV_REPLACE_STRING_LEN, "unknown(%llu)", flags);
}
}
#undef DEV_REPLACE_STATE_ENTRY
static void print_u64_timespec(u64 timespec, const char *prefix)
{
char time_str[256];
struct tm tm;
time_t time = timespec;
localtime_r(&time, &tm);
strftime(time_str, sizeof(time_str), "%Y-%m-%d %H:%M:%S", &tm);
printf("%s%llu (%s)\n", prefix, timespec, time_str);
}
static void print_dev_replace_item(struct extent_buffer *eb, struct btrfs_dev_replace_item *ptr)
{
char mode_str[DEV_REPLACE_STRING_LEN] = { 0 };
char state_str[DEV_REPLACE_STRING_LEN] = { 0 };
replace_mode_to_str(btrfs_dev_replace_cont_reading_from_srcdev_mode(eb, ptr),
mode_str);
replace_state_to_str(btrfs_dev_replace_replace_state(eb, ptr),
state_str);
printf("\t\tsrc devid %lld cursor left %llu cursor right %llu mode %s\n",
btrfs_dev_replace_src_devid(eb, ptr),
btrfs_dev_replace_cursor_left(eb, ptr),
btrfs_dev_replace_cursor_right(eb, ptr),
mode_str);
printf("\t\tstate %s write errors %llu uncorrectable read errors %llu\n",
state_str, btrfs_dev_replace_num_write_errors(eb, ptr),
btrfs_dev_replace_num_uncorrectable_read_errors(eb, ptr));
print_u64_timespec(btrfs_dev_replace_time_started(eb, ptr), "\t\tstart time ");
print_u64_timespec(btrfs_dev_replace_time_started(eb, ptr), "\t\tstop time ");
}
void __btrfs_print_leaf(struct extent_buffer *eb, unsigned int mode)
{
struct btrfs_disk_key disk_key;
u32 leaf_data_size = BTRFS_LEAF_DATA_SIZE(eb->fs_info);
u32 i;
u32 nr;
const bool print_csum_items = (mode & BTRFS_PRINT_TREE_CSUM_ITEMS);
print_header_info(eb, mode);
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
u32 item_size;
void *ptr;
u64 objectid;
u32 type;
u64 offset;
/*
* Extra check on item pointers
* Here we don't need to be as strict as kernel leaf check.
* Only need to ensure all pointers are pointing range inside
* the leaf, thus no segfault.
*/
if (btrfs_item_offset(eb, i) > leaf_data_size ||
btrfs_item_size(eb, i) + btrfs_item_offset(eb, i) >
leaf_data_size) {
error(
"leaf %llu slot %u pointer invalid, offset %u size %u leaf data limit %u",
btrfs_header_bytenr(eb), i,
btrfs_item_offset(eb, i),
btrfs_item_size(eb, i), leaf_data_size);
error("skip remaining slots");
break;
}
item_size = btrfs_item_size(eb, i);
/* Untyped extraction of slot from btrfs_item_ptr */
ptr = btrfs_item_ptr(eb, i, void*);
btrfs_item_key(eb, &disk_key, i);
objectid = btrfs_disk_key_objectid(&disk_key);
type = btrfs_disk_key_type(&disk_key);
offset = btrfs_disk_key_offset(&disk_key);
printf("\titem %u ", i);
btrfs_print_key(&disk_key);
printf(" itemoff %u itemsize %u\n",
btrfs_item_offset(eb, i),
btrfs_item_size(eb, i));
if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID)
print_free_space_header(eb, i);
switch (type) {
case BTRFS_INODE_ITEM_KEY:
print_inode_item(eb, ptr);
break;
case BTRFS_INODE_REF_KEY:
print_inode_ref_item(eb, item_size, ptr);
break;
case BTRFS_INODE_EXTREF_KEY:
print_inode_extref_item(eb, item_size, ptr);
break;
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_XATTR_ITEM_KEY:
print_dir_item(eb, item_size, ptr);
break;
case BTRFS_DIR_LOG_INDEX_KEY:
case BTRFS_DIR_LOG_ITEM_KEY: {
struct btrfs_dir_log_item *dlog;
dlog = btrfs_item_ptr(eb, i, struct btrfs_dir_log_item);
printf("\t\tdir log end %llu\n",
(unsigned long long)btrfs_dir_log_end(eb, dlog));
break;
}
case BTRFS_ORPHAN_ITEM_KEY:
printf("\t\torphan item\n");
break;
case BTRFS_ROOT_ITEM_KEY:
print_root_item(eb, i);
break;
case BTRFS_ROOT_REF_KEY:
print_root_ref(eb, i, "ref");
break;
case BTRFS_ROOT_BACKREF_KEY:
print_root_ref(eb, i, "backref");
break;
case BTRFS_EXTENT_ITEM_KEY:
print_extent_item(eb, i, 0);
break;
case BTRFS_METADATA_ITEM_KEY:
print_extent_item(eb, i, 1);
break;
case BTRFS_TREE_BLOCK_REF_KEY:
printf("\t\ttree block backref\n");
break;
case BTRFS_SHARED_BLOCK_REF_KEY:
printf("\t\tshared block backref\n");
break;
case BTRFS_EXTENT_DATA_REF_KEY:
print_extent_data_ref(eb, i);
break;
case BTRFS_SHARED_DATA_REF_KEY:
print_shared_data_ref(eb, i);
break;
case BTRFS_EXTENT_OWNER_REF_KEY:
print_extent_owner_ref(eb, i);
break;
case BTRFS_EXTENT_REF_V0_KEY:
printf("\t\textent ref v0 (deprecated)\n");
break;
case BTRFS_CSUM_ITEM_KEY:
printf("\t\tcsum item\n");
break;
case BTRFS_EXTENT_CSUM_KEY:
print_extent_csum(eb, item_size, offset, ptr, print_csum_items);
break;
case BTRFS_EXTENT_DATA_KEY:
print_file_extent_item(eb, i, ptr);
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
print_block_group_item(eb, ptr);
break;
case BTRFS_FREE_SPACE_INFO_KEY:
print_free_space_info(eb, i);
break;
case BTRFS_FREE_SPACE_EXTENT_KEY:
printf("\t\tfree space extent\n");
break;
case BTRFS_FREE_SPACE_BITMAP_KEY:
printf("\t\tfree space bitmap\n");
break;
case BTRFS_CHUNK_ITEM_KEY:
print_chunk_item(eb, ptr);
break;
case BTRFS_DEV_ITEM_KEY:
print_dev_item(eb, ptr);
break;
case BTRFS_DEV_EXTENT_KEY:
print_dev_extent(eb, i);
break;
case BTRFS_QGROUP_STATUS_KEY:
print_qgroup_status(eb, i);
break;
case BTRFS_QGROUP_RELATION_KEY:
break;
case BTRFS_QGROUP_INFO_KEY:
print_qgroup_info(eb, i);
break;
case BTRFS_QGROUP_LIMIT_KEY:
print_qgroup_limit(eb, i);
break;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
print_uuid_item(eb, btrfs_item_ptr_offset(eb, i),
btrfs_item_size(eb, i));
break;
case BTRFS_STRING_ITEM_KEY: {
const char *str = eb->data + btrfs_item_ptr_offset(eb, i);
printf("\t\titem data %.*s\n", item_size, str);
break;
}
case BTRFS_PERSISTENT_ITEM_KEY:
print_persistent_item(eb, ptr, item_size, objectid,
offset);
break;
case BTRFS_TEMPORARY_ITEM_KEY:
print_temporary_item(eb, ptr, objectid, offset);
break;
case BTRFS_RAID_STRIPE_KEY:
print_raid_stripe_key(eb, item_size, ptr);
break;
case BTRFS_DEV_REPLACE_KEY:
print_dev_replace_item(eb, ptr);
break;
};
fflush(stdout);
}
}
/* Helper function to reach the leftmost tree block at @path->lowest_level */
static int search_leftmost_tree_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path, int root_level)
{
int i;
int ret = 0;
/* Release all nodes except path->nodes[root_level] */
for (i = 0; i < root_level; i++) {
path->slots[i] = 0;
if (!path->nodes[i])
continue;
free_extent_buffer(path->nodes[i]);
}
/* Reach the leftmost tree block by always reading out slot 0 */
for (i = root_level; i > path->lowest_level; i--) {
struct extent_buffer *eb;
path->slots[i] = 0;
eb = btrfs_read_node_slot(path->nodes[i], 0);
if (!extent_buffer_uptodate(eb)) {
ret = -EIO;
goto out;
}
path->nodes[i - 1] = eb;
}
out:
return ret;
}
/*
* Walk up the tree as far as necessary to find the next sibling tree block.
* More generic version of btrfs_next_leaf(), as it could find sibling nodes if
* @path->lowest_level is not 0.
*
* Returns 0 if it found something or 1 if there are no greater leaves.
* Returns < 0 on io errors.
*/
static int next_sibling_tree_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path)
{
int slot;
int level = path->lowest_level + 1;
struct extent_buffer *eb;
struct extent_buffer *next = NULL;
BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
do {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
eb = path->nodes[level];
if (slot >= btrfs_header_nritems(eb)) {
level++;
if (level == BTRFS_MAX_LEVEL)
return 1;
continue;
}
next = btrfs_read_node_slot(eb, slot);
if (!extent_buffer_uptodate(next))
return -EIO;
break;
} while (level < BTRFS_MAX_LEVEL);
path->slots[level] = slot;
while(1) {
level--;
eb = path->nodes[level];
free_extent_buffer(eb);
path->nodes[level] = next;
path->slots[level] = 0;
if (level == path->lowest_level)
break;
next = btrfs_read_node_slot(next, 0);
if (!extent_buffer_uptodate(next))
return -EIO;
}
return 0;
}
static void bfs_print_children(struct extent_buffer *root_eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = root_eb->fs_info;
struct btrfs_path path = { 0 };
int root_level = btrfs_header_level(root_eb);
int cur_level;
int ret;
if (root_level < 1)
return;
mode &= ~(BTRFS_PRINT_TREE_FOLLOW);
mode |= BTRFS_PRINT_TREE_BFS;
mode &= ~(BTRFS_PRINT_TREE_DFS);
/* For path */
extent_buffer_get(root_eb);
path.nodes[root_level] = root_eb;
for (cur_level = root_level - 1; cur_level >= 0; cur_level--) {
path.lowest_level = cur_level;
/* Use the leftmost tree block as a starting point */
ret = search_leftmost_tree_block(fs_info, &path, root_level);
if (ret < 0)
goto out;
/* Print all sibling tree blocks */
while (1) {
btrfs_print_tree(path.nodes[cur_level], mode);
ret = next_sibling_tree_block(fs_info, &path);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
}
}
out:
btrfs_release_path(&path);
return;
}
static void dfs_print_children(struct extent_buffer *root_eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = root_eb->fs_info;
struct extent_buffer *next;
int nr = btrfs_header_nritems(root_eb);
int root_eb_level = btrfs_header_level(root_eb);
int i;
mode |= BTRFS_PRINT_TREE_FOLLOW;
mode |= BTRFS_PRINT_TREE_DFS;
mode &= ~(BTRFS_PRINT_TREE_BFS);
for (i = 0; i < nr; i++) {
struct btrfs_tree_parent_check check = {
.owner_root = btrfs_header_owner(root_eb),
.transid = btrfs_node_ptr_generation(root_eb, i),
.level = root_eb_level,
};
next = read_tree_block(fs_info, btrfs_node_blockptr(root_eb, i),
&check);
if (!extent_buffer_uptodate(next)) {
fprintf(stderr, "failed to read %llu in tree %llu\n",
btrfs_node_blockptr(root_eb, i),
btrfs_header_owner(root_eb));
continue;
}
if (btrfs_header_level(next) != root_eb_level - 1) {
warning(
"eb corrupted: parent bytenr %llu slot %d level %d child bytenr %llu level has %d expect %d, skipping the slot",
btrfs_header_bytenr(root_eb), i, root_eb_level,
btrfs_header_bytenr(next),
btrfs_header_level(next), root_eb_level - 1);
free_extent_buffer(next);
continue;
}
btrfs_print_tree(next, mode);
free_extent_buffer(next);
}
}
/*
* Print a tree block (applies to both node and leaf).
*
* @eb: tree block where to start
* @mode: bits setting mode of operation, see BTRFS_PRINT_TREE_*
*/
void btrfs_print_tree(struct extent_buffer *eb, unsigned int mode)
{
u32 i;
u32 nr;
u32 ptr_num;
struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_disk_key disk_key;
struct btrfs_key key;
const bool follow = (mode & BTRFS_PRINT_TREE_FOLLOW);
unsigned int traverse = BTRFS_PRINT_TREE_DEFAULT;
/* BFS is default and takes precedence if both are set */
if (mode & BTRFS_PRINT_TREE_DFS)
traverse = BTRFS_PRINT_TREE_DFS;
if (mode & BTRFS_PRINT_TREE_BFS)
traverse = BTRFS_PRINT_TREE_BFS;
nr = btrfs_header_nritems(eb);
if (btrfs_is_leaf(eb)) {
__btrfs_print_leaf(eb, mode);
return;
}
/* We are crossing eb boundary, this node must be corrupted */
if (nr > BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb))
warning(
"node nr_items corrupted, has %u limit %u, continue anyway",
nr, BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb));
print_header_info(eb, mode);
ptr_num = BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb);
for (i = 0; i < nr && i < ptr_num; i++) {
u64 blocknr = btrfs_node_blockptr(eb, i);
btrfs_node_key(eb, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
printf("\t");
btrfs_print_key(&disk_key);
printf(" block %llu gen %llu\n",
(unsigned long long)blocknr,
(unsigned long long)btrfs_node_ptr_generation(eb, i));
fflush(stdout);
}
if (!follow)
return;
if (follow && !fs_info)
return;
/* Keep non-traversal modes */
mode &= ~(BTRFS_PRINT_TREE_DFS | BTRFS_PRINT_TREE_BFS);
if (traverse == BTRFS_PRINT_TREE_DFS) {
dfs_print_children(eb, mode);
} else {
bfs_print_children(eb, mode);
}
}
static bool is_valid_csum_type(u16 csum_type)
{
switch (csum_type) {
case BTRFS_CSUM_TYPE_CRC32:
case BTRFS_CSUM_TYPE_XXHASH:
case BTRFS_CSUM_TYPE_SHA256:
case BTRFS_CSUM_TYPE_BLAKE2:
return true;
default:
return false;
}
}
static int check_csum_sblock(void *sb, int csum_size, u16 csum_type)
{
u8 result[BTRFS_CSUM_SIZE];
btrfs_csum_data(NULL, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE,
result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
return !memcmp(sb, result, csum_size);
}
struct readable_flag_entry {
u64 bit;
char *output;
};
#define DEF_COMPAT_RO_FLAG_ENTRY(bit_name) \
{BTRFS_FEATURE_COMPAT_RO_##bit_name, #bit_name}
static struct readable_flag_entry compat_ro_flags_array[] = {
DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE),
DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE_VALID),
DEF_COMPAT_RO_FLAG_ENTRY(BLOCK_GROUP_TREE),
};
static const int compat_ro_flags_num = sizeof(compat_ro_flags_array) /
sizeof(struct readable_flag_entry);
#define DEF_INCOMPAT_FLAG_ENTRY(bit_name) \
{BTRFS_FEATURE_INCOMPAT_##bit_name, #bit_name}
static struct readable_flag_entry incompat_flags_array[] = {
DEF_INCOMPAT_FLAG_ENTRY(MIXED_BACKREF),
DEF_INCOMPAT_FLAG_ENTRY(DEFAULT_SUBVOL),
DEF_INCOMPAT_FLAG_ENTRY(MIXED_GROUPS),
DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_LZO),
DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_ZSTD),
DEF_INCOMPAT_FLAG_ENTRY(BIG_METADATA),
DEF_INCOMPAT_FLAG_ENTRY(EXTENDED_IREF),
DEF_INCOMPAT_FLAG_ENTRY(RAID56),
DEF_INCOMPAT_FLAG_ENTRY(SKINNY_METADATA),
DEF_INCOMPAT_FLAG_ENTRY(NO_HOLES),
DEF_INCOMPAT_FLAG_ENTRY(METADATA_UUID),
DEF_INCOMPAT_FLAG_ENTRY(RAID1C34),
DEF_INCOMPAT_FLAG_ENTRY(ZONED),
DEF_INCOMPAT_FLAG_ENTRY(EXTENT_TREE_V2),
DEF_INCOMPAT_FLAG_ENTRY(RAID_STRIPE_TREE),
DEF_INCOMPAT_FLAG_ENTRY(SIMPLE_QUOTA),
};
static const int incompat_flags_num = sizeof(incompat_flags_array) /
sizeof(struct readable_flag_entry);
#define DEF_HEADER_FLAG_ENTRY(bit_name) \
{BTRFS_HEADER_FLAG_##bit_name, #bit_name}
#define DEF_SUPER_FLAG_ENTRY(bit_name) \
{BTRFS_SUPER_FLAG_##bit_name, #bit_name}
static struct readable_flag_entry super_flags_array[] = {
DEF_HEADER_FLAG_ENTRY(WRITTEN),
DEF_HEADER_FLAG_ENTRY(RELOC),
DEF_SUPER_FLAG_ENTRY(CHANGING_FSID),
DEF_SUPER_FLAG_ENTRY(CHANGING_FSID_V2),
DEF_SUPER_FLAG_ENTRY(SEEDING),
DEF_SUPER_FLAG_ENTRY(METADUMP),
DEF_SUPER_FLAG_ENTRY(METADUMP_V2),
DEF_SUPER_FLAG_ENTRY(CHANGING_BG_TREE),
DEF_SUPER_FLAG_ENTRY(CHANGING_DATA_CSUM),
DEF_SUPER_FLAG_ENTRY(CHANGING_META_CSUM),
};
static const int super_flags_num = ARRAY_SIZE(super_flags_array);
static void __print_readable_flag(u64 flag, struct readable_flag_entry *array,
int array_size, u64 supported_flags)
{
int i;
int first = 1;
struct readable_flag_entry *entry;
if (!flag)
return;
printf("\t\t\t( ");
for (i = 0; i < array_size; i++) {
entry = array + i;
if ((flag & supported_flags) && (flag & entry->bit)) {
if (first)
printf("%s ", entry->output);
else
printf("|\n\t\t\t %s ", entry->output);
first = 0;
}
}
flag &= ~supported_flags;
if (flag) {
if (first)
printf("unknown flag: 0x%llx ", flag);
else
printf("|\n\t\t\t unknown flag: 0x%llx ", flag);
}
printf(")\n");
}
static void print_readable_compat_ro_flag(u64 flag)
{
u64 print_flags = 0;
for (int i = 0; i < compat_ro_flags_num; i++)
print_flags |= compat_ro_flags_array[i].bit;
return __print_readable_flag(flag, compat_ro_flags_array,
compat_ro_flags_num,
print_flags);
}
static void print_readable_incompat_flag(u64 flag)
{
u64 print_flags = 0;
for (int i = 0; i < incompat_flags_num; i++)
print_flags |= incompat_flags_array[i].bit;
return __print_readable_flag(flag, incompat_flags_array,
incompat_flags_num, print_flags);
}
static void print_readable_super_flag(u64 flag)
{
u64 print_flags = 0;
for (int i = 0; i < super_flags_num; i++)
print_flags |= super_flags_array[i].bit;
return __print_readable_flag(flag, super_flags_array,
super_flags_num, print_flags);
}
static void print_sys_chunk_array(struct btrfs_super_block *sb)
{
struct extent_buffer *buf;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *array_ptr;
unsigned long sb_array_offset;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur_offset;
struct btrfs_key key;
int item;
buf = alloc_dummy_extent_buffer(NULL, 0, BTRFS_SUPER_INFO_SIZE);
if (!buf) {
error_msg(ERROR_MSG_MEMORY, NULL);
return;
}
write_extent_buffer(buf, sb, 0, sizeof(*sb));
buf->len = sizeof(*sb);
array_size = btrfs_super_sys_array_size(sb);
array_ptr = sb->sys_chunk_array;
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
if (array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
error("sys_array_size %u shouldn't exceed %u bytes",
array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
goto out;
}
cur_offset = 0;
item = 0;
while (cur_offset < array_size) {
disk_key = (struct btrfs_disk_key *)array_ptr;
len = sizeof(*disk_key);
if (cur_offset + len > array_size)
goto out_short_read;
btrfs_disk_key_to_cpu(&key, disk_key);
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
printf("\titem %d ", item);
btrfs_print_key(disk_key);
putchar('\n');
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)sb_array_offset;
/*
* At least one btrfs_chunk with one stripe must be
* present, exact stripe count check comes afterwards
*/
len = btrfs_chunk_item_size(1);
if (cur_offset + len > array_size)
goto out_short_read;
num_stripes = btrfs_chunk_num_stripes(buf, chunk);
if (!num_stripes) {
error(
"invalid number of stripes %u in sys_array at offset %u",
num_stripes, cur_offset);
break;
}
len = btrfs_chunk_item_size(num_stripes);
if (cur_offset + len > array_size)
goto out_short_read;
print_chunk_item(buf, chunk);
} else {
error("unexpected item type %u in sys_array at offset %u",
(u32)key.type, cur_offset);
break;
}
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
item++;
}
out:
free_extent_buffer(buf);
return;
out_short_read:
error("sys_array too short to read %u bytes at offset %u",
len, cur_offset);
free_extent_buffer(buf);
}
static int empty_backup(struct btrfs_root_backup *backup)
{
if (backup == NULL ||
(backup->tree_root == 0 &&
backup->tree_root_gen == 0))
return 1;
return 0;
}
static void print_root_backup(struct btrfs_root_backup *backup,
bool extent_tree_v2)
{
const char *extent_tree_str = "backup_extent_root";
if (extent_tree_v2)
extent_tree_str = "backup_block_group_root";
printf("\t\tbackup_tree_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_tree_root(backup),
btrfs_backup_tree_root_gen(backup),
btrfs_backup_tree_root_level(backup));
printf("\t\tbackup_chunk_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_chunk_root(backup),
btrfs_backup_chunk_root_gen(backup),
btrfs_backup_chunk_root_level(backup));
printf("\t\t%s:\t%llu\tgen: %llu\tlevel: %d\n",
extent_tree_str,
btrfs_backup_extent_root(backup),
btrfs_backup_extent_root_gen(backup),
btrfs_backup_extent_root_level(backup));
printf("\t\tbackup_fs_root:\t\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_fs_root(backup),
btrfs_backup_fs_root_gen(backup),
btrfs_backup_fs_root_level(backup));
printf("\t\tbackup_dev_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_dev_root(backup),
btrfs_backup_dev_root_gen(backup),
btrfs_backup_dev_root_level(backup));
printf("\t\tcsum_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_csum_root(backup),
btrfs_backup_csum_root_gen(backup),
btrfs_backup_csum_root_level(backup));
printf("\t\tbackup_total_bytes:\t%llu\n",
btrfs_backup_total_bytes(backup));
printf("\t\tbackup_bytes_used:\t%llu\n",
btrfs_backup_bytes_used(backup));
printf("\t\tbackup_num_devices:\t%llu\n",
btrfs_backup_num_devices(backup));
putchar('\n');
}
static void print_backup_roots(struct btrfs_super_block *sb)
{
struct btrfs_root_backup *backup;
int i;
bool extent_tree_v2 = (btrfs_super_incompat_flags(sb) &
BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2);
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
backup = sb->super_roots + i;
if (!empty_backup(backup)) {
printf("\tbackup %d:\n", i);
print_root_backup(backup, extent_tree_v2);
}
}
}
void btrfs_print_superblock(struct btrfs_super_block *sb, int full)
{
int i;
char *s, buf[BTRFS_UUID_UNPARSED_SIZE];
u8 *p;
u32 csum_size;
u16 csum_type;
bool metadata_uuid_present = (btrfs_super_incompat_flags(sb) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
int cmp_res = 0;
csum_type = btrfs_super_csum_type(sb);
csum_size = BTRFS_CSUM_SIZE;
printf("csum_type\t\t%hu (", csum_type);
if (!is_valid_csum_type(csum_type)) {
printf("INVALID");
} else {
printf("%s", btrfs_super_csum_name(csum_type));
csum_size = btrfs_super_csum_size(sb);
}
printf(")\n");
printf("csum_size\t\t%llu\n", (unsigned long long)csum_size);
printf("csum\t\t\t0x");
for (i = 0, p = sb->csum; i < csum_size; i++)
printf("%02x", p[i]);
if (!is_valid_csum_type(csum_type))
printf(" [UNKNOWN CSUM TYPE OR SIZE]");
else if (check_csum_sblock(sb, csum_size, csum_type))
printf(" [match]");
else
printf(" [DON'T MATCH]");
putchar('\n');
printf("bytenr\t\t\t%llu\n",
(unsigned long long)btrfs_super_bytenr(sb));
printf("flags\t\t\t0x%llx\n",
(unsigned long long)btrfs_super_flags(sb));
print_readable_super_flag(btrfs_super_flags(sb));
printf("magic\t\t\t");
s = (char *) &sb->magic;
for (i = 0; i < 8; i++)
putchar(isprint(s[i]) ? s[i] : '.');
if (btrfs_super_magic(sb) == BTRFS_MAGIC)
printf(" [match]\n");
else
printf(" [DON'T MATCH]\n");
uuid_unparse(sb->fsid, buf);
printf("fsid\t\t\t%s\n", buf);
uuid_unparse(sb->metadata_uuid, buf);
printf("metadata_uuid\t\t%s\n", buf);
printf("label\t\t\t");
s = sb->label;
for (i = 0; i < BTRFS_LABEL_SIZE && s[i]; i++)
putchar(isprint(s[i]) ? s[i] : '.');
putchar('\n');
printf("generation\t\t%llu\n",
(unsigned long long)btrfs_super_generation(sb));
printf("root\t\t\t%llu\n", (unsigned long long)btrfs_super_root(sb));
printf("sys_array_size\t\t%llu\n",
(unsigned long long)btrfs_super_sys_array_size(sb));
printf("chunk_root_generation\t%llu\n",
(unsigned long long)btrfs_super_chunk_root_generation(sb));
printf("root_level\t\t%llu\n",
(unsigned long long)btrfs_super_root_level(sb));
printf("chunk_root\t\t%llu\n",
(unsigned long long)btrfs_super_chunk_root(sb));
printf("chunk_root_level\t%llu\n",
(unsigned long long)btrfs_super_chunk_root_level(sb));
printf("log_root\t\t%llu\n",
(unsigned long long)btrfs_super_log_root(sb));
printf("log_root_transid (deprecated)\t%llu\n",
le64_to_cpu(sb->__unused_log_root_transid));
printf("log_root_level\t\t%llu\n",
(unsigned long long)btrfs_super_log_root_level(sb));
printf("total_bytes\t\t%llu\n",
(unsigned long long)btrfs_super_total_bytes(sb));
printf("bytes_used\t\t%llu\n",
(unsigned long long)btrfs_super_bytes_used(sb));
printf("sectorsize\t\t%llu\n",
(unsigned long long)btrfs_super_sectorsize(sb));
printf("nodesize\t\t%llu\n",
(unsigned long long)btrfs_super_nodesize(sb));
printf("leafsize (deprecated)\t%u\n",
le32_to_cpu(sb->__unused_leafsize));
printf("stripesize\t\t%llu\n",
(unsigned long long)btrfs_super_stripesize(sb));
printf("root_dir\t\t%llu\n",
(unsigned long long)btrfs_super_root_dir(sb));
printf("num_devices\t\t%llu\n",
(unsigned long long)btrfs_super_num_devices(sb));
printf("compat_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_compat_flags(sb));
printf("compat_ro_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_compat_ro_flags(sb));
print_readable_compat_ro_flag(btrfs_super_compat_ro_flags(sb));
printf("incompat_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_incompat_flags(sb));
print_readable_incompat_flag(btrfs_super_incompat_flags(sb));
printf("cache_generation\t%llu\n",
(unsigned long long)btrfs_super_cache_generation(sb));
printf("uuid_tree_generation\t%llu\n",
(unsigned long long)btrfs_super_uuid_tree_generation(sb));
uuid_unparse(sb->dev_item.uuid, buf);
printf("dev_item.uuid\t\t%s\n", buf);
uuid_unparse(sb->dev_item.fsid, buf);
if (metadata_uuid_present) {
cmp_res = !memcmp(sb->dev_item.fsid, sb->metadata_uuid,
BTRFS_FSID_SIZE);
} else {
cmp_res = !memcmp(sb->dev_item.fsid, sb->fsid, BTRFS_FSID_SIZE);
}
printf("dev_item.fsid\t\t%s %s\n", buf,
cmp_res ? "[match]" : "[DON'T MATCH]");
printf("dev_item.type\t\t%llu\n", (unsigned long long)
btrfs_stack_device_type(&sb->dev_item));
printf("dev_item.total_bytes\t%llu\n", (unsigned long long)
btrfs_stack_device_total_bytes(&sb->dev_item));
printf("dev_item.bytes_used\t%llu\n", (unsigned long long)
btrfs_stack_device_bytes_used(&sb->dev_item));
printf("dev_item.io_align\t%u\n", (unsigned int)
btrfs_stack_device_io_align(&sb->dev_item));
printf("dev_item.io_width\t%u\n", (unsigned int)
btrfs_stack_device_io_width(&sb->dev_item));
printf("dev_item.sector_size\t%u\n", (unsigned int)
btrfs_stack_device_sector_size(&sb->dev_item));
printf("dev_item.devid\t\t%llu\n",
btrfs_stack_device_id(&sb->dev_item));
printf("dev_item.dev_group\t%u\n", (unsigned int)
btrfs_stack_device_group(&sb->dev_item));
printf("dev_item.seek_speed\t%u\n", (unsigned int)
btrfs_stack_device_seek_speed(&sb->dev_item));
printf("dev_item.bandwidth\t%u\n", (unsigned int)
btrfs_stack_device_bandwidth(&sb->dev_item));
printf("dev_item.generation\t%llu\n", (unsigned long long)
btrfs_stack_device_generation(&sb->dev_item));
if (full) {
printf("sys_chunk_array[%d]:\n", BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
print_sys_chunk_array(sb);
printf("backup_roots[%d]:\n", BTRFS_NUM_BACKUP_ROOTS);
print_backup_roots(sb);
}
}